About the Project

Weierstrass%E2%80%99s

AdvancedHelp

(0.004 seconds)

11—20 of 622 matching pages

11: 23.1 Special Notation
β–Ί β–Ίβ–Ίβ–Ίβ–Ίβ–Ί
𝕃 lattice in β„‚ .
= e i ⁒ Ο€ ⁒ Ο„ nome.
Ξ” discriminant g 2 3 ⁑ 27 ⁒ g 3 2 ⁑ .
S 1 / S 2 set of all elements of S 1 , modulo elements of S 2 . Thus two elements of S 1 / S 2 are equivalent if they are both in S 1 and their difference is in S 2 . (For an example see §20.12(ii).)
β–ΊThe main functions treated in this chapter are the Weierstrass -function ⁑ ( z ) = ⁑ ( z | 𝕃 ) = ⁑ ( z ; g 2 ⁑ , g 3 ⁑ ) ; the Weierstrass zeta function ΞΆ ⁑ ( z ) = ΞΆ ⁑ ( z | 𝕃 ) = ΞΆ ⁑ ( z ; g 2 ⁑ , g 3 ⁑ ) ; the Weierstrass sigma function Οƒ ⁑ ( z ) = Οƒ ⁑ ( z | 𝕃 ) = Οƒ ⁑ ( z ; g 2 ⁑ , g 3 ⁑ ) ; the elliptic modular function Ξ» ⁑ ( Ο„ ) ; Klein’s complete invariant J ⁑ ( Ο„ ) ; Dedekind’s eta function Ξ· ⁑ ( Ο„ ) . …
12: 23.6 Relations to Other Functions
β–Ί
§23.6(i) Theta Functions
β–Ί
§23.6(ii) Jacobian Elliptic Functions
β–Ί
§23.6(iii) General Elliptic Functions
β–Ί
§23.6(iv) Elliptic Integrals
β–Ί
13: 23.11 Integral Representations
§23.11 Integral Representations
β–ΊLet Ο„ = Ο‰ 3 / Ο‰ 1 and β–Ί
f 1 ⁑ ( s , Ο„ ) = cosh 2 ⁑ ( 1 2 ⁒ Ο„ ⁒ s ) 1 2 ⁒ e s ⁒ cosh ⁑ ( Ο„ ⁒ s ) + e 2 ⁒ s ,
β–Ί
23.11.2 ⁑ ( z ) = 1 z 2 + 8 ⁒ 0 s ⁒ ( e s ⁒ sinh 2 ⁑ ( 1 2 ⁒ z ⁒ s ) ⁒ f 1 ⁑ ( s , Ο„ ) + e i ⁒ Ο„ ⁒ s ⁒ sin 2 ⁑ ( 1 2 ⁒ z ⁒ s ) ⁒ f 2 ⁑ ( s , Ο„ ) ) ⁒ d s ,
β–Ί
23.11.3 ΞΆ ⁑ ( z ) = 1 z + 0 ( e s ⁒ ( z ⁒ s sinh ⁑ ( z ⁒ s ) ) ⁒ f 1 ⁑ ( s , Ο„ ) e i ⁒ Ο„ ⁒ s ⁒ ( z ⁒ s sin ⁑ ( z ⁒ s ) ) ⁒ f 2 ⁑ ( s , Ο„ ) ) ⁒ d s ,
14: 23.5 Special Lattices
β–Ί
§23.5(ii) Rectangular Lattice
β–ΊIn this case the lattice roots e 1 ⁑ , e 2 ⁑ , and e 3 ⁑ are real and distinct. … β–Ί
§23.5(iii) Lemniscatic Lattice
β–Ί
§23.5(iv) Rhombic Lattice
β–Ί
§23.5(v) Equianharmonic Lattice
15: 23.19 Interrelations
β–Ί
23.19.1 Ξ» ⁑ ( Ο„ ) = 16 ⁒ ( Ξ· 2 ⁑ ( 2 ⁒ Ο„ ) ⁒ Ξ· ⁑ ( 1 2 ⁒ Ο„ ) Ξ· 3 ⁑ ( Ο„ ) ) 8 ,
β–Ί
23.19.2 J ⁑ ( Ο„ ) = 4 27 ⁒ ( 1 Ξ» ⁑ ( Ο„ ) + Ξ» 2 ⁑ ( Ο„ ) ) 3 ( Ξ» ⁑ ( Ο„ ) ⁒ ( 1 Ξ» ⁑ ( Ο„ ) ) ) 2 ,
β–Ί
23.19.3 J ⁑ ( Ο„ ) = g 2 3 ⁑ g 2 3 ⁑ 27 ⁒ g 3 2 ⁑ ,
β–Ίwhere g 2 ⁑ , g 3 ⁑ are the invariants of the lattice 𝕃 with generators 1 and Ο„ ; see §23.3(i). … β–Ί
23.19.4 Ξ” = ( 2 ⁒ Ο€ ) 12 ⁒ Ξ· 24 ⁑ ( Ο„ ) .
16: 23.3 Differential Equations
β–ΊThe lattice invariants are defined by … β–Ίand are denoted by e 1 ⁑ , e 2 ⁑ , e 3 ⁑ . … β–ΊSimilarly for ΞΆ ⁑ ( z ; g 2 ⁑ , g 3 ⁑ ) and Οƒ ⁑ ( z ; g 2 ⁑ , g 3 ⁑ ) . As functions of g 2 ⁑ and g 3 ⁑ , ⁑ ( z ; g 2 ⁑ , g 3 ⁑ ) and ΞΆ ⁑ ( z ; g 2 ⁑ , g 3 ⁑ ) are meromorphic and Οƒ ⁑ ( z ; g 2 ⁑ , g 3 ⁑ ) is entire. … β–Ί
§23.3(ii) Differential Equations and Derivatives
17: 23.14 Integrals
§23.14 Integrals
β–Ί β–Ί
23.14.2 2 ⁑ ( z ) ⁒ d z = 1 6 ⁒ ⁑ ( z ) + 1 12 ⁒ g 2 ⁑ ⁒ z ,
β–Ί
18: 19.2 Definitions
β–ΊBecause s 2 is a polynomial, we have … β–Ί
§19.2(ii) Legendre’s Integrals
β–ΊLegendre’s complementary complete elliptic integrals are defined via … β–Ί
§19.2(iii) Bulirsch’s Integrals
β–ΊBulirsch’s integrals are linear combinations of Legendre’s integrals that are chosen to facilitate computational application of Bartky’s transformation (Bartky (1938)). …
19: 23.13 Zeros
§23.13 Zeros
β–ΊFor information on the zeros of ⁑ ( z ) see Eichler and Zagier (1982).
20: 23.10 Addition Theorems and Other Identities
β–Ί
§23.10(i) Addition Theorems
β–Ί
§23.10(ii) Duplication Formulas
β–Ί(23.10.8) continues to hold when e 1 ⁑ , e 2 ⁑ , e 3 ⁑ are permuted cyclically. … β–Ί
§23.10(iii) n -Tuple Formulas
β–Ί
§23.10(iv) Homogeneity