About the Project

Stieltjes constants

AdvancedHelp

(0.002 seconds)

11—15 of 15 matching pages

11: 18.27 q -Hahn Class
§18.27(vi) Stieltjes–Wigert Polynomials
18.27.20 0 S n ( q 1 2 x ; q ) S m ( q 1 2 x ; q ) exp ( ( ln x ) 2 2 ln ( q 1 ) ) d x = 2 π q 1 ln ( q 1 ) q n ( q ; q ) n δ n , m .
From Stieltjes–Wigert to Hermite
18.27.20_5 lim q 1 ( q ; q ) n S n ( q 1 x 2 ( 1 q ) + 1 ; q ) ( 1 q 2 ) n / 2 = ( 1 ) n H n ( x ) .
12: 18.2 General Orthogonal Polynomials
More generally than (18.2.1)–(18.2.3), w ( x ) d x may be replaced in (18.2.1) by d μ ( x ) , where the measure μ is the Lebesgue–Stieltjes measure μ α corresponding to a bounded nondecreasing function α on the closure of ( a , b ) with an infinite number of points of increase, and such that a b | x | n d μ ( x ) < for all n . …
§18.2(iii) Standardization and Related Constants
Constants
(i) the traditional OP standardizations of Table 18.3.1, where each is defined in terms of the above constants. … , of the form w ( x ) d x ) nor is it necessarily unique, up to a positive constant factor. …
13: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
For a Lebesgue–Stieltjes measure d α on X let L 2 ( X , d α ) be the space of all Lebesgue–Stieltjes measurable complex-valued functions on X which are square integrable with respect to d α ,
1.18.11 a b | f ( x ) | 2 d α ( x ) < .
Note that the integral in (1.18.66) is not singular if approached separately from above, or below, the real axis: in fact analytic continuation from the upper half of the complex plane, across the cut, and onto higher Riemann Sheets can access complex poles with singularities at discrete energies λ res i Γ res / 2 corresponding to quantum resonances, or decaying quantum states with lifetimes proportional to 1 / Γ res . … Then dim N z is constant for z > 0 and also constant for z < 0 . …
14: 1.4 Calculus of One Variable
Stieltjes, Lebesgue, and Lebesgue–Stieltjes integrals
See Riesz and Sz.-Nagy (1990, Ch. 3). …
15: Bibliography C
  • M. Carmignani and A. Tortorici Macaluso (1985) Calcolo delle funzioni speciali Γ ( x ) , log Γ ( x ) , β ( x , y ) , erf ( x ) , erfc ( x ) alle alte precisioni. Atti Accad. Sci. Lett. Arti Palermo Ser. (5) 2(1981/82) (1), pp. 7–25 (Italian).
  • B. W. Char (1980) On Stieltjes’ continued fraction for the gamma function. Math. Comp. 34 (150), pp. 547–551.
  • R. F. Christy and I. Duck (1961) γ rays from an extranuclear direct capture process. Nuclear Physics 24 (1), pp. 89–101.
  • Th. Clausen (1828) Über die Fälle, wenn die Reihe von der Form y = 1 + α 1 β γ x + α α + 1 1 2 β β + 1 γ γ + 1 x 2 + etc. ein Quadrat von der Form z = 1 + α 1 β γ δ ϵ x + α α + 1 1 2 β β + 1 γ γ + 1 δ δ + 1 ϵ ϵ + 1 x 2 + etc. hat. J. Reine Angew. Math. 3, pp. 89–91.