About the Project

Stieltjes

AdvancedHelp

(0.001 seconds)

1—10 of 30 matching pages

1: 31.15 Stieltjes Polynomials
§31.15 Stieltjes Polynomials
§31.15(ii) Zeros
This is the Stieltjes electrostatic interpretation. …
§31.15(iii) Products of Stieltjes Polynomials
2: 18.40 Methods of Computation
§18.40(ii) The Classical Moment Problem
Having now directly connected computation of the quadrature abscissas and weights to the moments, what follows uses these for a Stieltjes–Perron inversion to regain w ( x ) .
Stieltjes Inversion via (approximate) Analytic Continuation
Histogram Approach
Derivative Rule Approach
3: 25.2 Definition and Expansions
25.2.4 ζ ( s ) = 1 s 1 + n = 0 ( 1 ) n n ! γ n ( s 1 ) n ,
where the Stieltjes constants γ n are defined via
25.2.5 γ n = lim m ( k = 1 m ( ln k ) n k ( ln m ) n + 1 n + 1 ) .
4: 18.29 Asymptotic Approximations for q -Hahn and Askey–Wilson Classes
18.29.2 Q n ( z ; a , b , c , d q ) z n ( a z 1 , b z 1 , c z 1 , d z 1 ; q ) ( z 2 , b c , b d , c d ; q ) , n ; z , a , b , c , d , q fixed.
For a uniform asymptotic expansion of the Stieltjes–Wigert polynomials, see Wang and Wong (2006). …
5: 2.6 Distributional Methods
§2.6(ii) Stieltjes Transform
The Stieltjes transform of f ( t ) is defined by … For a more detailed discussion of the derivation of asymptotic expansions of Stieltjes transforms by the distribution method, see McClure and Wong (1978) and Wong (1989, Chapter 6). Corresponding results for the generalized Stieltjes transform …An application has been given by López (2000) to derive asymptotic expansions of standard symmetric elliptic integrals, complete with error bounds; see §19.27(vi). …
6: 1.4 Calculus of One Variable
Stieltjes, Lebesgue, and Lebesgue–Stieltjes integrals
See Riesz and Sz.-Nagy (1990, Ch. 3). …
7: 1.14 Integral Transforms
§1.14(vi) Stieltjes Transform
The Stieltjes transform of a real-valued function f ( t ) is defined by … …
Inversion
Laplace Transform
8: 3.10 Continued Fractions
Stieltjes Fractions
is called a Stieltjes fraction ( S -fraction). … For the same function f ( z ) , the convergent C n of the Jacobi fraction (3.10.11) equals the convergent C 2 n of the Stieltjes fraction (3.10.6). …
9: 1.1 Special Notation
x , y real variables.
L 2 ( X , d α ) the space of all Lebesgue–Stieltjes measurable functions on X which are square integrable with respect to d α .
10: 18.27 q -Hahn Class
§18.27(vi) Stieltjes–Wigert Polynomials
18.27.20 0 S n ( q 1 2 x ; q ) S m ( q 1 2 x ; q ) exp ( ( ln x ) 2 2 ln ( q 1 ) ) d x = 2 π q 1 ln ( q 1 ) q n ( q ; q ) n δ n , m .
From Stieltjes–Wigert to Hermite
18.27.20_5 lim q 1 ( q ; q ) n S n ( q 1 x 2 ( 1 q ) + 1 ; q ) ( 1 q 2 ) n / 2 = ( 1 ) n H n ( x ) .