About the Project

Sobolev

AdvancedHelp

(0.000 seconds)

8 matching pages

1: 37.19 Other Orthogonal Polynomials of d Variables
β–Ί
§37.19(iv) Sobolev OPs on the Ball and on the Simplex
β–Ί
37.19.7 ⟨ f , g ⟩ = 𝔹 d s f ⁒ ( 𝐱 ) ⁒ s g ⁒ ( 𝐱 ) ⁒ d 𝐱 + k = 0 s 2 1 π•Š d 1 Ξ” k ⁒ f ⁒ ( ΞΎ ) ⁒ Ξ” k ⁒ g ⁒ ( ΞΎ ) ⁒ d Οƒ ⁒ ( ΞΎ ) ,
β–Ίwhich is useful for studying approximation order in the Sobolev space; see Li and Xu (2014). … …
2: 18.36 Miscellaneous Polynomials
β–Ί
§18.36(ii) Sobolev Orthogonal Polynomials
β–ΊSobolev OP’s are orthogonal with respect to an inner product involving derivatives. …
3: Bibliography I
β–Ί
  • A. Iserles, P. E. Koch, S. P. Nørsett, and J. M. Sanz-Serna (1991) On polynomials orthogonal with respect to certain Sobolev inner products. J. Approx. Theory 65 (2), pp. 151–175.
  • 4: Bibliography E
    β–Ί
  • W. N. Everitt, L. L. Littlejohn, and R. Wellman (2004) The Sobolev orthogonality and spectral analysis of the Laguerre polynomials { L n k } for positive integers k . J. Comput. Appl. Math. 171 (1-2), pp. 199–234.
  • 5: Bibliography K
    β–Ί
  • S. F. Khwaja and A. B. Olde Daalhuis (2012) Uniform asymptotic approximations for the Meixner-Sobolev polynomials. Anal. Appl. (Singap.) 10 (3), pp. 345–361.
  • β–Ί
  • J. Koekoek, R. Koekoek, and H. Bavinck (1998) On differential equations for Sobolev-type Laguerre polynomials. Trans. Amer. Math. Soc. 350 (1), pp. 347–393.
  • 6: Bibliography M
    β–Ί
  • F. Marcellán, M. Alfaro, and M. L. Rezola (1993) Orthogonal polynomials on Sobolev spaces: Old and new directions. J. Comput. Appl. Math. 48 (1-2), pp. 113–131.
  • β–Ί
  • F. Marcellán and Y. Xu (2015) On Sobolev orthogonal polynomials. Expo. Math. 33 (3), pp. 308–352.
  • 7: Bibliography G
    β–Ί
  • W. Gautschi (2004) Orthogonal Polynomials: Computation and Approximation. Numerical Mathematics and Scientific Computation, Oxford University Press, New York.
  • 8: null
    error generating summary