About the Project

Schr%C3%anger%20equation

AdvancedHelp

(0.002 seconds)

11—20 of 502 matching pages

11: 11.14 Tables
  • Zhang and Jin (1996) tabulates 𝐇 n ( x ) and 𝐋 n ( x ) for n = 4 ( 1 ) 3 and x = 0 ( 1 ) 20 to 8D or 7S.

  • §11.14(iv) Anger–Weber Functions
  • Bernard and Ishimaru (1962) tabulates 𝐉 ν ( x ) and 𝐄 ν ( x ) for ν = 10 ( .1 ) 10 and x = 0 ( .1 ) 10 to 5D.

  • §11.14(v) Incomplete Functions
  • Agrest and Maksimov (1971, Chapter 11) defines incomplete Struve, Anger, and Weber functions and includes tables of an incomplete Struve function 𝐇 n ( x , α ) for n = 0 , 1 , x = 0 ( .2 ) 10 , and α = 0 ( .2 ) 1.4 , 1 2 π , together with surface plots.

  • 12: 11.11 Asymptotic Expansions of Anger–Weber Functions
    §11.11 Asymptotic Expansions of Anger–Weber Functions
    §11.11(i) Large | z | , Fixed ν
    §11.11(ii) Large | ν | , Fixed z
    If ν = n ( ) , then (11.10.29) applies for 𝐉 n ( z ) , and …
    13: 10.35 Generating Function and Associated Series
    Jacobi–Anger expansions: for z , θ , …
    14: Bibliography N
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • G. Nemes (2014b) The resurgence properties of the large order asymptotics of the Anger-Weber function I. J. Class. Anal. 4 (1), pp. 1–39.
  • G. Nemes (2014c) The resurgence properties of the large order asymptotics of the Anger-Weber function II. J. Class. Anal. 4 (2), pp. 121–147.
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
  • 15: 11.13 Methods of Computation
    §11.13(i) Introduction
    The treatment of Lommel and Anger–Weber functions is similar. …
    §11.13(iv) Differential Equations
    A comprehensive approach is to integrate the defining inhomogeneous differential equations (11.2.7) and (11.2.9) numerically, using methods described in §3.7. …
    §11.13(v) Difference Equations
    16: 10.12 Generating Function and Associated Series
    Jacobi–Anger expansions: for z , θ , …
    17: 11.1 Special Notation
    §11.1 Special Notation
    For the functions J ν ( z ) , Y ν ( z ) , H ν ( 1 ) ( z ) , H ν ( 2 ) ( z ) , I ν ( z ) , and K ν ( z ) see §§10.2(ii), 10.25(ii). The functions treated in this chapter are the Struve functions 𝐇 ν ( z ) and 𝐊 ν ( z ) , the modified Struve functions 𝐋 ν ( z ) and 𝐌 ν ( z ) , the Lommel functions s μ , ν ( z ) and S μ , ν ( z ) , the Anger function 𝐉 ν ( z ) , the Weber function 𝐄 ν ( z ) , and the associated Anger–Weber function 𝐀 ν ( z ) .
    18: 11.16 Software
    §11.16(v) Anger and Weber Functions
    §11.16(vi) Integrals of Anger and Weber Functions
    19: 28 Mathieu Functions and Hill’s Equation
    Chapter 28 Mathieu Functions and Hill’s Equation
    20: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • G. D. Bernard and A. Ishimaru (1962) Tables of the Anger and Lommel-Weber Functions. Technical report Technical Report 53 and AFCRL 796, University Washington Press, Seattle.
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • S. Bochner (1952) Bessel functions and modular relations of higher type and hyperbolic differential equations. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (Tome Supplementaire), pp. 12–20.