About the Project

Rutherford scattering

AdvancedHelp

(0.001 seconds)

31—35 of 35 matching pages

31: Bibliography C
  • D. Colton and R. Kress (1998) Inverse Acoustic and Electromagnetic Scattering Theory. 2nd edition, Applied Mathematical Sciences, Vol. 93, Springer-Verlag, Berlin.
  • J. N. L. Connor and D. C. Mackay (1979) Calculation of angular distributions in complex angular momentum theories of elastic scattering. Molecular Physics 37 (6), pp. 1703–1712.
  • H. Cornille and A. Martin (1972) Constraints on the phase of scattering amplitudes due to positivity. Nuclear Phys. B 49, pp. 413–440.
  • 32: Bibliography M
  • N. W. Macfadyen and P. Winternitz (1971) Crossing symmetric expansions of physical scattering amplitudes: The O ( 2 , 1 ) group and Lamé functions. J. Mathematical Phys. 12, pp. 281–293.
  • P. L. Marston (1992) Geometrical and Catastrophe Optics Methods in Scattering. In Physical Acoustics, A. D. Pierce and R. N. Thurston (Eds.), Vol. 21, pp. 1–234.
  • F. A. McDonald and J. Nuttall (1969) Complex-energy method for elastic e -H scattering above the ionization threshold. Phys. Rev. Lett. 23 (7), pp. 361–363.
  • 33: Bibliography S
  • L. Schlessinger (1968) Use of analyticity in the calculation of nonrelativistic scattering amplitudes. Phys. Rev. 167, pp. 1411–1423.
  • C. Schwartz (1961) Variational calculations of scattering. Ann. Phys. 16, pp. 36–50.
  • 34: Bibliography L
  • W. J. Lentz (1976) Generating Bessel functions in Mie scattering calculations using continued fractions. Applied Optics 15 (3), pp. 668–671.
  • 35: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
    this being a matrix element of the resolvent F ( T ) = ( z T ) 1 , this being a key quantity in many parts of physics and applied math, quantum scattering theory being a simple example, see Newton (2002, Ch. 7). … which appear in the quantum theory of binding or scattering of a particle in a spherically symmetric potential V ( r ) in three dimensions, and where r [ 0 , ) . The bound states are in the negative energy discrete spectrum, and the scattering states are in the positive energy continuous spectrum, 𝝈 c = [ 0 , ) , or, said more simply, in the continuum. …