About the Project

Rogers%E2%80%93Ramanujan%20identities

AdvancedHelp

(0.003 seconds)

31—40 of 249 matching pages

31: 22.7 Landen Transformations
32: Bibliography S
  • K. L. Sala (1989) Transformations of the Jacobian amplitude function and its calculation via the arithmetic-geometric mean. SIAM J. Math. Anal. 20 (6), pp. 1514–1528.
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • L. Shen (1998) On an identity of Ramanujan based on the hypergeometric series F 1 2 ( 1 3 , 2 3 ; 1 2 ; x ) . J. Number Theory 69 (2), pp. 125–134.
  • R. Sips (1949) Représentation asymptotique des fonctions de Mathieu et des fonctions d’onde sphéroidales. Trans. Amer. Math. Soc. 66 (1), pp. 93–134 (French).
  • R. Sitaramachandrarao and B. Davis (1986) Some identities involving the Riemann zeta function. II. Indian J. Pure Appl. Math. 17 (10), pp. 1175–1186.
  • 33: 36.5 Stokes Sets
    36.5.4 80 x 5 40 x 4 55 x 3 + 5 x 2 + 20 x 1 = 0 ,
    36.5.7 X = 9 20 + 20 u 4 Y 2 20 u 2 + 6 u 2 sign ( z ) ,
    34: Bibliography C
  • L. G. Cabral-Rosetti and M. A. Sanchis-Lozano (2000) Generalized hypergeometric functions and the evaluation of scalar one-loop integrals in Feynman diagrams. J. Comput. Appl. Math. 115 (1-2), pp. 93–99.
  • H. H. Chan (1998) On Ramanujan’s cubic transformation formula for F 1 2 ( 1 3 , 2 3 ; 1 ; z ) . Math. Proc. Cambridge Philos. Soc. 124 (2), pp. 193–204.
  • R. Chelluri, L. B. Richmond, and N. M. Temme (2000) Asymptotic estimates for generalized Stirling numbers. Analysis (Munich) 20 (1), pp. 1–13.
  • D. V. Chudnovsky and G. V. Chudnovsky (1988) Approximations and Complex Multiplication According to Ramanujan. In Ramanujan Revisited (Urbana-Champaign, Ill., 1987), G. E. Andrews, R. A. Askey, B. C. Bernd, K. G. Ramanathan, and R. A. Rankin (Eds.), pp. 375–472.
  • D. Colton and R. Kress (1998) Inverse Acoustic and Electromagnetic Scattering Theory. 2nd edition, Applied Mathematical Sciences, Vol. 93, Springer-Verlag, Berlin.
  • 35: 10.31 Power Series
    36: 1.11 Zeros of Polynomials
    Resolvent cubic is z 3 + 12 z 2 + 20 z + 9 = 0 with roots θ 1 = 1 , θ 2 = 1 2 ( 11 + 85 ) , θ 3 = 1 2 ( 11 85 ) , and θ 1 = 1 , θ 2 = 1 2 ( 17 + 5 ) , θ 3 = 1 2 ( 17 5 ) . …
    37: 3.4 Differentiation
    B 2 5 = 1 120 ( 6 10 t 15 t 2 + 20 t 3 5 t 4 ) ,
    B 3 6 = 1 720 ( 12 8 t 45 t 2 + 20 t 3 + 15 t 4 6 t 5 ) ,
    B 2 6 = 1 60 ( 9 9 t 30 t 2 + 20 t 3 + 5 t 4 3 t 5 ) ,
    B 2 6 = 1 60 ( 9 + 9 t 30 t 2 20 t 3 + 5 t 4 + 3 t 5 ) ,
    B 2 7 = 1 240 ( 72 + 36 t 267 t 2 80 t 3 + 90 t 4 + 12 t 5 7 t 6 ) ,
    38: 27.20 Methods of Computation: Other Number-Theoretic Functions
    To compute a particular value p ( n ) it is better to use the Hardy–Ramanujan–Rademacher series (27.14.9). … A recursion formula obtained by differentiating (27.14.18) can be used to calculate Ramanujan’s function τ ( n ) , and the values can be checked by the congruence (27.14.20). …
    39: Bibliography O
  • J. Oliver (1977) An error analysis of the modified Clenshaw method for evaluating Chebyshev and Fourier series. J. Inst. Math. Appl. 20 (3), pp. 379–391.
  • I. Olkin (1959) A class of integral identities with matrix argument. Duke Math. J. 26 (2), pp. 207–213.
  • C. Osácar, J. Palacián, and M. Palacios (1995) Numerical evaluation of the dilogarithm of complex argument. Celestial Mech. Dynam. Astronom. 62 (1), pp. 93–98.
  • 40: Frank Garvan
    He is managing editor of the Ramanujan Journal, a journal devoted to areas of mathematics influenced by Ramanujan. …