About the Project

Meijer%20G-function

AdvancedHelp

(0.004 seconds)

11—20 of 118 matching pages

11: 15.12 Asymptotic Approximations
where
15.12.13 G 0 ( ± β ) = ( 2 + e ± ζ ) c b ( 1 / 2 ) ( 1 + e ± ζ ) a c + ( 1 / 2 ) ( z 1 e ± ζ ) a + ( 1 / 2 ) β e ζ e ζ .
12: Bibliography F
  • FDLIBM (free C library)
  • S. Fempl (1960) Sur certaines sommes des intégral-cosinus. Bull. Soc. Math. Phys. Serbie 12, pp. 13–20 (French).
  • J. L. Fields (1973) Uniform asymptotic expansions of certain classes of Meijer G -functions for a large parameter. SIAM J. Math. Anal. 4 (3), pp. 482–507.
  • J. L. Fields (1983) Uniform asymptotic expansions of a class of Meijer G -functions for a large parameter. SIAM J. Math. Anal. 14 (6), pp. 1204–1253.
  • G. Freud (1969) On weighted polynomial approximation on the whole real axis. Acta Math. Acad. Sci. Hungar. 20, pp. 223–225.
  • 13: Bibliography M
  • O. I. Marichev (1984) On the Representation of Meijer’s G -Function in the Vicinity of Singular Unity. In Complex Analysis and Applications ’81 (Varna, 1981), pp. 383–398.
  • C. S. Meijer (1932) Über die asymptotische Entwicklung von 0 i ( arg w μ ) e ν z w sinh z 𝑑 z , ( π 2 < μ < π 2 ) für große Werte von | w | und | ν | . I, II. Proc. Akad. Wet. Amsterdam 35, pp. 1170–1180, 1291–1303 (German).
  • C. S. Meijer (1946) On the G -function. VII, VIII. Nederl. Akad. Wetensch., Proc. 49, pp. 1063–1072, 1165–1175 = Indagationes Math. 8, 661–670, 713–723 (1946).
  • J. W. Meijer and N. H. G. Baken (1987) The exponential integral distribution. Statist. Probab. Lett. 5 (3), pp. 209–211.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • 14: 20 Theta Functions
    Chapter 20 Theta Functions
    15: Software Index
    16: Richard A. Askey
    17: 10.17 Asymptotic Expansions for Large Argument
    10.17.17 R ± ( ν , z ) = ( 1 ) 2 cos ( ν π ) ( k = 0 m 1 ( ± i ) k a k ( ν ) z k G k ( 2 i z ) + R m , ± ( ν , z ) ) ,
    18: 8 Incomplete Gamma and Related
    Functions
    Chapter 8 Incomplete Gamma and Related Functions
    19: 28 Mathieu Functions and Hill’s Equation
    Chapter 28 Mathieu Functions and Hill’s Equation
    20: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.