About the Project

Mathieu functions

AdvancedHelp

(0.006 seconds)

21—30 of 62 matching pages

21: 28.5 Second Solutions fe n , ge n
28.5.1 fe n ( z , q ) = C n ( q ) ( z ce n ( z , q ) + f n ( z , q ) ) ,
Wronskians
28.5.8 𝒲 { ce n , fe n } = ce n ( 0 , q ) fe n ( 0 , q ) ,
For further information on C n ( q ) , S n ( q ) , and expansions of f n ( z , q ) , g n ( z , q ) in Fourier series or in series of ce n , se n functions, see McLachlan (1947, Chapter VII) or Meixner and Schäfke (1954, §2.72). …
22: 28.10 Integral Equations
§28.10(i) Equations with Elementary Kernels
§28.10(ii) Equations with Bessel-Function Kernels
28.10.9 0 π / 2 J 0 ( 2 q ( cos 2 τ sin 2 ζ ) ) ce 2 n ( τ , q ) d τ = w II ( 1 2 π ; a 2 n ( q ) , q ) ce 2 n ( ζ , q ) ,
§28.10(iii) Further Equations
23: 28.15 Expansions for Small q
§28.15 Expansions for Small q
§28.15(ii) Solutions me ν ( z , q )
28.15.3 me ν ( z , q ) = e i ν z q 4 ( 1 ν + 1 e i ( ν + 2 ) z 1 ν 1 e i ( ν 2 ) z ) + q 2 32 ( 1 ( ν + 1 ) ( ν + 2 ) e i ( ν + 4 ) z + 1 ( ν 1 ) ( ν 2 ) e i ( ν 4 ) z 2 ( ν 2 + 1 ) ( ν 2 1 ) 2 e i ν z ) + ;
24: 28.9 Zeros
§28.9 Zeros
For real q each of the functions ce 2 n ( z , q ) , se 2 n + 1 ( z , q ) , ce 2 n + 1 ( z , q ) , and se 2 n + 2 ( z , q ) has exactly n zeros in 0 < z < 1 2 π . …
25: 31.12 Confluent Forms of Heun’s Equation
This has regular singularities at z = 0 and 1 , and an irregular singularity of rank 1 at z = . Mathieu functions (Chapter 28), spheroidal wave functions (Chapter 30), and Coulomb spheroidal functions30.12) are special cases of solutions of the confluent Heun equation. …
26: 28.26 Asymptotic Approximations for Large q
§28.26 Asymptotic Approximations for Large q
28.26.1 Mc m ( 3 ) ( z , h ) = e i ϕ ( π h cosh z ) 1 / 2 ( Fc m ( z , h ) i Gc m ( z , h ) ) ,
28.26.2 i Ms m + 1 ( 3 ) ( z , h ) = e i ϕ ( π h cosh z ) 1 / 2 ( Fs m ( z , h ) i Gs m ( z , h ) ) ,
§28.26(ii) Uniform Approximations
27: 28.8 Asymptotic Expansions for Large q
§28.8(ii) Sips’ Expansions
§28.8(iii) Goldstein’s Expansions
Barrett’s Expansions
Dunster’s Approximations
28: 28.32 Mathematical Applications
§28.32 Mathematical Applications
§28.32(i) Elliptical Coordinates and an Integral Relationship
29: 28.24 Expansions in Series of Cross-Products of Bessel Functions or Modified Bessel Functions
§28.24 Expansions in Series of Cross-Products of Bessel Functions or Modified Bessel Functions
28.24.11 Ko 2 m + 2 ( z , h ) = = 0 B 2 + 2 2 m + 2 ( h 2 ) B 2 s + 2 2 m + 2 ( h 2 ) ( I s ( h e z ) K + s + 2 ( h e z ) I + s + 2 ( h e z ) K s ( h e z ) ) ,
28.24.12 Ke 2 m + 1 ( z , h ) = = 0 B 2 + 1 2 m + 1 ( h 2 ) B 2 s + 1 2 m + 1 ( h 2 ) ( I s ( h e z ) K + s + 1 ( h e z ) I + s + 1 ( h e z ) K s ( h e z ) ) ,
28.24.13 Ko 2 m + 1 ( z , h ) = = 0 A 2 + 1 2 m + 1 ( h 2 ) A 2 s + 1 2 m + 1 ( h 2 ) ( I s ( h e z ) K + s + 1 ( h e z ) + I + s + 1 ( h e z ) K s ( h e z ) ) .
For further power series of Mathieu radial functions of integer order for small parameters and improved convergence rate see Larsen et al. (2009).
30: 28.13 Graphics
§28.13 Graphics
See accompanying text
Figure 28.13.1: λ ν ( q ) as a function of q for ν = 0.5 ( 1 ) 3.5 and a n ( q ) , b n ( q ) for n = 0 , 1 , 2 , 3 , 4 ( a ’s), n = 1 , 2 , 3 , 4 ( b ’s). … Magnify