About the Project

Lauricella%0Afunction

AdvancedHelp

(0.002 seconds)

21—30 of 699 matching pages

21: 20.15 Tables
This reference gives θ j ( x , q ) , j = 1 , 2 , 3 , 4 , and their logarithmic x -derivatives to 4D for x / π = 0 ( .1 ) 1 , α = 0 ( 9 ) 90 , where α is the modular angle given by
20.15.1 sin α = θ 2 2 ( 0 , q ) / θ 3 2 ( 0 , q ) = k .
Spenceley and Spenceley (1947) tabulates θ 1 ( x , q ) / θ 2 ( 0 , q ) , θ 2 ( x , q ) / θ 2 ( 0 , q ) , θ 3 ( x , q ) / θ 4 ( 0 , q ) , θ 4 ( x , q ) / θ 4 ( 0 , q ) to 12D for u = 0 ( 1 ) 90 , α = 0 ( 1 ) 89 , where u = 2 x / ( π θ 3 2 ( 0 , q ) ) and α is defined by (20.15.1), together with the corresponding values of θ 2 ( 0 , q ) and θ 4 ( 0 , q ) . Lawden (1989, pp. 270–279) tabulates θ j ( x , q ) , j = 1 , 2 , 3 , 4 , to 5D for x = 0 ( 1 ) 90 , q = 0.1 ( .1 ) 0.9 , and also q to 5D for k 2 = 0 ( .01 ) 1 . Tables of Neville’s theta functions θ s ( x , q ) , θ c ( x , q ) , θ d ( x , q ) , θ n ( x , q ) (see §20.1) and their logarithmic x -derivatives are given in Abramowitz and Stegun (1964, pp. 582–585) to 9D for ε , α = 0 ( 5 ) 90 , where (in radian measure) ε = x / θ 3 2 ( 0 , q ) = π x / ( 2 K ( k ) ) , and α is defined by (20.15.1). …
22: 10.72 Mathematical Applications
These expansions are uniform with respect to z , including the turning point z 0 and its neighborhood, and the region of validity often includes cut neighborhoods (§1.10(vi)) of other singularities of the differential equation, especially irregular singularities. … The number m can also be replaced by any real constant λ ( > 2 ) in the sense that ( z z 0 ) λ f ( z ) is analytic and nonvanishing at z 0 ; moreover, g ( z ) is permitted to have a single or double pole at z 0 . … In regions in which the function f ( z ) has a simple pole at z = z 0 and ( z z 0 ) 2 g ( z ) is analytic at z = z 0 (the case λ = 1 in §10.72(i)), asymptotic expansions of the solutions w of (10.72.1) for large u can be constructed in terms of Bessel functions and modified Bessel functions of order ± 1 + 4 ρ , where ρ is the limiting value of ( z z 0 ) 2 g ( z ) as z z 0 . … In (10.72.1) assume f ( z ) = f ( z , α ) and g ( z ) = g ( z , α ) depend continuously on a real parameter α , f ( z , α ) has a simple zero z = z 0 ( α ) and a double pole z = 0 , except for a critical value α = a , where z 0 ( a ) = 0 . …These approximations are uniform with respect to both z and α , including z = z 0 ( a ) , the cut neighborhood of z = 0 , and α = a . …
23: 28.21 Graphics
See accompanying text
Figure 28.21.1: Mc 0 ( 1 ) ( x , h ) for 0 h 3 , 0 x 2 . Magnify 3D Help
See accompanying text
Figure 28.21.2: Mc 1 ( 1 ) ( x , h ) for 0 h 3 , 0 x 2 . Magnify 3D Help
See accompanying text
Figure 28.21.3: Mc 0 ( 2 ) ( x , h ) for 0.1 h 2 , 0 x 2 . Magnify 3D Help
See accompanying text
Figure 28.21.4: Mc 1 ( 2 ) ( x , h ) for 0.2 h 2 , 0 x 2 . Magnify 3D Help
See accompanying text
Figure 28.21.5: Ms 1 ( 1 ) ( x , h ) for 0 h 3 , 0 x 2 . Magnify 3D Help
24: 28.35 Tables
  • Blanch and Clemm (1962) includes values of Mc n ( 1 ) ( x , q ) and Mc n ( 1 ) ( x , q ) for n = 0 ( 1 ) 15 with q = 0 ( .05 ) 1 , x = 0 ( .02 ) 1 . Also Ms n ( 1 ) ( x , q ) and Ms n ( 1 ) ( x , q ) for n = 1 ( 1 ) 15 with q = 0 ( .05 ) 1 , x = 0 ( .02 ) 1 . Precision is generally 7D.

  • Blanch and Clemm (1965) includes values of Mc n ( 2 ) ( x , q ) , Mc n ( 2 ) ( x , q ) for n = 0 ( 1 ) 7 , x = 0 ( .02 ) 1 ; n = 8 ( 1 ) 15 , x = 0 ( .01 ) 1 . Also Ms n ( 2 ) ( x , q ) , Ms n ( 2 ) ( x , q ) for n = 1 ( 1 ) 7 , x = 0 ( .02 ) 1 ; n = 8 ( 1 ) 15 , x = 0 ( .01 ) 1 . In all cases q = 0 ( .05 ) 1 . Precision is generally 7D. Approximate formulas and graphs are also included.

  • National Bureau of Standards (1967) includes the eigenvalues a n ( q ) , b n ( q ) for n = 0 ( 1 ) 3 with q = 0 ( .2 ) 20 ( .5 ) 37 ( 1 ) 100 , and n = 4 ( 1 ) 15 with q = 0 ( 2 ) 100 ; Fourier coefficients for ce n ( x , q ) and se n ( x , q ) for n = 0 ( 1 ) 15 , n = 1 ( 1 ) 15 , respectively, and various values of q in the interval [ 0 , 100 ] ; joining factors g e , n ( q ) , f e , n ( q ) for n = 0 ( 1 ) 15 with q = 0 ( .5  to  10 ) 100 (but in a different notation). Also, eigenvalues for large values of q . Precision is generally 8D.

  • Zhang and Jin (1996, pp. 521–532) includes the eigenvalues a n ( q ) , b n + 1 ( q ) for n = 0 ( 1 ) 4 , q = 0 ( 1 ) 50 ; n = 0 ( 1 ) 20 ( a ’s) or 19 ( b ’s), q = 1 , 3 , 5 , 10 , 15 , 25 , 50 ( 50 ) 200 . Fourier coefficients for ce n ( x , 10 ) , se n + 1 ( x , 10 ) , n = 0 ( 1 ) 7 . Mathieu functions ce n ( x , 10 ) , se n + 1 ( x , 10 ) , and their first x -derivatives for n = 0 ( 1 ) 4 , x = 0 ( 5 ) 90 . Modified Mathieu functions Mc n ( j ) ( x , 10 ) , Ms n + 1 ( j ) ( x , 10 ) , and their first x -derivatives for n = 0 ( 1 ) 4 , j = 1 , 2 , x = 0 ( .2 ) 4 . Precision is mostly 9S.

  • Blanch and Clemm (1969) includes eigenvalues a n ( q ) , b n ( q ) for q = ρ e i ϕ , ρ = 0 ( .5 ) 25 , ϕ = 5 ( 5 ) 90 , n = 0 ( 1 ) 15 ; 4D. Also a n ( q ) and b n ( q ) for q = i ρ , ρ = 0 ( .5 ) 100 , n = 0 ( 2 ) 14 and n = 2 ( 2 ) 16 , respectively; 8D. Double points for n = 0 ( 1 ) 15 ; 8D. Graphs are included.

  • 25: 31.5 Solutions Analytic at Three Singularities: Heun Polynomials
    Let α = n , n = 0 , 1 , 2 , , and q n , m , m = 0 , 1 , , n , be the eigenvalues of the tridiagonal matrix
    31.5.1 [ 0 a γ 0 0 P 1 Q 1 R 1 0 0 P 2 Q 2 R n 1 0 0 P n Q n ] ,
    is a polynomial of degree n , and hence a solution of (31.2.1) that is analytic at all three finite singularities 0 , 1 , a . …
    26: 10.75 Tables
  • Achenbach (1986) tabulates J 0 ( x ) , J 1 ( x ) , Y 0 ( x ) , Y 1 ( x ) , x = 0 ( .1 ) 8 , 20D or 18–20S.

  • Abramowitz and Stegun (1964, Chapter 11) tabulates 0 x J 0 ( t ) d t , 0 x Y 0 ( t ) d t , x = 0 ( .1 ) 10 , 10D; 0 x t 1 ( 1 J 0 ( t ) ) d t , x t 1 Y 0 ( t ) d t , x = 0 ( .1 ) 5 , 8D.

  • Zhang and Jin (1996, p. 270) tabulates 0 x J 0 ( t ) d t , 0 x t 1 ( 1 J 0 ( t ) ) d t , 0 x Y 0 ( t ) d t , x t 1 Y 0 ( t ) d t , x = 0 ( .1 ) 1 ( .5 ) 20 , 8D.

  • Achenbach (1986) tabulates I 0 ( x ) , I 1 ( x ) , K 0 ( x ) , K 1 ( x ) , x = 0 ( .1 ) 8 , 19D or 19–21S.

  • Abramowitz and Stegun (1964, Chapter 11) tabulates e x 0 x I 0 ( t ) d t , e x x K 0 ( t ) d t , x = 0 ( .1 ) 10 , 7D; e x 0 x t 1 ( I 0 ( t ) 1 ) d t , x e x x t 1 K 0 ( t ) d t , x = 0 ( .1 ) 5 , 6D.

  • 27: 8.26 Tables
  • Pagurova (1963) tabulates P ( a , x ) and Q ( a , x ) (with different notation) for a = 0 ( .05 ) 3 , x = 0 ( .05 ) 1 to 7D.

  • Pearson (1965) tabulates the function I ( u , p ) ( = P ( p + 1 , u ) ) for p = 1 ( .05 ) 0 ( .1 ) 5 ( .2 ) 50 , u = 0 ( .1 ) u p to 7D, where I ( u , u p ) rounds off to 1 to 7D; also I ( u , p ) for p = 0.75 ( .01 ) 1 , u = 0 ( .1 ) 6 to 5D.

  • Zhang and Jin (1996, Table 3.8) tabulates γ ( a , x ) for a = 0.5 , 1 , 3 , 5 , 10 , 25 , 50 , 100 , x = 0 ( .1 ) 1 ( 1 ) 3 , 5 ( 5 ) 30 , 50 , 100 to 8D or 8S.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • 28: 22.5 Special Values
    For example, at z = K + i K , sn ( z , k ) = 1 / k , d sn ( z , k ) / d z = 0 . …
    §22.5(ii) Limiting Values of k
    If k 0 + , then K π / 2 and K ; if k 1 , then K and K π / 2 . … Expansions for K , K as k 0 or 1 are given in §§19.5, 19.12. …
    29: 21.4 Graphics
    This Riemann matrix originates from the Riemann surface represented by the algebraic curve μ 3 λ 7 + 2 λ 3 μ = 0 ; compare §21.7(i).
    Figure 21.4.1: θ ^ ( 𝐳 | 𝛀 ) parametrized by (21.4.1). The surface plots are of θ ^ ( x + i y , 0 | 𝛀 ) , 0 x 1 , 0 y 5 (suffix 1); θ ^ ( x , y | 𝛀 ) , 0 x 1 , 0 y 1 (suffix 2); θ ^ ( i x , i y | 𝛀 ) , 0 x 5 , 0 y 5 (suffix 3). …
    See accompanying text
    Figure 21.4.2: θ ^ ( x + i y , 0 | 𝛀 1 ) , 0 x 1 , 0 y 5 . … Magnify 3D Help
    See accompanying text
    Figure 21.4.3: | θ ^ ( x + i y , 0 | 𝛀 1 ) | , 0 x 1 , 0 y 2 . Magnify 3D Help
    See accompanying text
    Figure 21.4.5: The real part of a genus 3 scaled Riemann theta function: θ ^ ( x + i y , 0 , 0 | 𝛀 2 ) , 0 x 1 , 0 y 3 . … Magnify 3D Help
    30: 10.48 Graphs
    See accompanying text
    Figure 10.48.1: 𝗃 n ( x ) , n = 0 ( 1 ) 4 , 0 x 12 . Magnify
    See accompanying text
    Figure 10.48.2: 𝗒 n ( x ) , n = 0 ( 1 ) 4 , 0 < x 12 . Magnify
    See accompanying text
    Figure 10.48.3: 𝗃 5 ( x ) , 𝗒 5 ( x ) , 𝗃 5 2 ( x ) + 𝗒 5 2 ( x ) , 0 x 12 . Magnify
    See accompanying text
    Figure 10.48.4: 𝗃 5 ( x ) , 𝗒 5 ( x ) , 𝗃 5 2 ( x ) + 𝗒 5 2 ( x ) , 0 x 12 . Magnify
    See accompanying text
    Figure 10.48.5: 𝗂 0 ( 1 ) ( x ) , 𝗂 0 ( 2 ) ( x ) , 𝗄 0 ( x ) , 0 x 4 . Magnify