About the Project

Lam%C3%A9%20wave%20equation

AdvancedHelp

(0.003 seconds)

11—20 of 513 matching pages

11: 20 Theta Functions
Chapter 20 Theta Functions
12: 36 Integrals with Coalescing Saddles
13: 28 Mathieu Functions and Hill’s Equation
Chapter 28 Mathieu Functions and Hill’s Equation
14: 10.73 Physical Applications
The Helmholtz equation, ( 2 + k 2 ) ψ = 0 , follows from the wave equation …This equation governs problems in acoustic and electromagnetic wave propagation. …See Krivoshlykov (1994, Chapter 2, §2.2.10; Chapter 5, §5.2.2), Kapany and Burke (1972, Chapters 4–6; Chapter 7, §A.1), and Slater (1942, Chapter 4, §§20, 25). …
§10.73(ii) Spherical Bessel Functions
15: 30.9 Asymptotic Approximations and Expansions
§30.9(i) Prolate Spheroidal Wave Functions
§30.9(ii) Oblate Spheroidal Wave Functions
§30.9(iii) Other Approximations and Expansions
The asymptotic behavior of 𝖯𝗌 n m ( x , γ 2 ) and 𝖰𝗌 n m ( x , γ 2 ) as x ± 1 is given in Erdélyi et al. (1955, p. 151). …
16: 30.10 Series and Integrals
Integrals and integral equations for 𝖯𝗌 n m ( x , γ 2 ) are given in Arscott (1964b, §8.6), Erdélyi et al. (1955, §16.13), Flammer (1957, Chapter 5), and Meixner (1951). …
17: 8 Incomplete Gamma and Related
Functions
18: Bibliography N
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • R. G. Newton (2002) Scattering theory of waves and particles. Dover Publications, Inc., Mineola, NY.
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
  • J. F. Nye (1999) Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations. Institute of Physics Publishing, Bristol.
  • 19: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 20: 23 Weierstrass Elliptic and Modular
    Functions