About the Project

Laguerre polynomials

AdvancedHelp

(0.008 seconds)

21—30 of 50 matching pages

21: 18.16 Zeros
§18.16(iv) Laguerre
The zeros of L n ( α ) ( x ) are denoted by x n , m , m = 1 , 2 , , n , with …
Asymptotic Behavior
Lastly, in view of (18.7.19) and (18.7.20), results for the zeros of L n ( ± 1 2 ) ( x ) lead immediately to results for the zeros of H n ( x ) . …
18.16.20 Disc ( L n ( α ) ) = j = 1 n j j 2 n + 2 ( j + α ) j 1 .
22: 18.12 Generating Functions
Laguerre
18.12.13 ( 1 z ) α 1 exp ( x z z 1 ) = n = 0 L n ( α ) ( x ) z n , | z | < 1 .
18.12.14 Γ ( α + 1 ) ( x z ) 1 2 α e z J α ( 2 x z ) = n = 0 L n ( α ) ( x ) ( α + 1 ) n z n .
23: 17.17 Physical Applications
See Kassel (1995). … It involves q -generalizations of exponentials and Laguerre polynomials, and has been applied to the problems of the harmonic oscillator and Coulomb potentials. …
24: 18.15 Asymptotic Approximations
§18.15(iv) Laguerre
18.15.14 L n ( α ) ( x ) = n 1 2 α 1 4 e 1 2 x π 1 2 x 1 2 α + 1 4 ( cos θ n ( α ) ( x ) ( m = 0 M 1 a m ( x ) n 1 2 m + O ( 1 n 1 2 M ) ) + sin θ n ( α ) ( x ) ( m = 1 M 1 b m ( x ) n 1 2 m + O ( 1 n 1 2 M ) ) ) ,
18.15.19 L n ( α ) ( ν x ) = e 1 2 ν x 2 α x 1 2 α + 1 4 ( 1 x ) 1 4 ( ξ 1 2 J α ( ν ξ ) m = 0 M 1 A m ( ξ ) ν 2 m + ξ 1 2 J α + 1 ( ν ξ ) m = 0 M 1 B m ( ξ ) ν 2 m + 1 + ξ 1 2 env J α ( ν ξ ) O ( 1 ν 2 M 1 ) ) ,
18.15.22 L n ( α ) ( ν x ) = ( 1 ) n e 1 2 ν x 2 α 1 2 x 1 2 α + 1 4 ( ζ x 1 ) 1 4 ( Ai ( ν 2 3 ζ ) ν 1 3 m = 0 M 1 E m ( ζ ) ν 2 m + Ai ( ν 2 3 ζ ) ν 5 3 m = 0 M 1 F m ( ζ ) ν 2 m + envAi ( ν 2 3 ζ ) O ( 1 ν 2 M 2 3 ) ) ,
For asymptotic approximations of Jacobi, ultraspherical, and Laguerre polynomials in terms of Hermite polynomials, see López and Temme (1999a). …
25: 13.18 Relations to Other Functions
Laguerre Polynomials
13.18.17 W 1 2 α + 1 2 + n , 1 2 α ( z ) = ( 1 ) n ( α + 1 ) n M 1 2 α + 1 2 + n , 1 2 α ( z ) = ( 1 ) n n ! e 1 2 z z 1 2 α + 1 2 L n ( α ) ( z ) .
26: 18.30 Associated OP’s
§18.30(iii) Associated Laguerre Polynomials
The recursion relation for the associated Laguerre polynomials, see (18.30.2), (18.30.3) is
L 1 λ ( x ; c ) = 0 ,
L 0 λ ( x ; c ) = 1 ,
18.30.9 ( n + c + 1 ) L n + 1 λ ( x ; c ) = ( 2 n + 2 c + λ + 1 x ) L n λ ( x ; c ) ( n + c + λ ) L n 1 λ ( x ; c ) , n = 0 , 1 , .
27: 18.13 Continued Fractions
Laguerre
L n ( x ) is the denominator of the n th approximant to: …
28: 13.6 Relations to Other Functions
Laguerre Polynomials
29: 33.14 Definitions and Basic Properties
33.14.14 ϕ n , ( r ) = ( 1 ) + 1 + n ( 2 / n 3 ) 1 / 2 s ( 1 / n 2 , ; r ) = ( 1 ) + 1 + n n + 2 ( ( n 1 ) ! ( n + ) ! ) 1 / 2 ( 2 r ) + 1 e r / n L n 1 ( 2 + 1 ) ( 2 r / n )
30: 1.17 Integral and Series Representations of the Dirac Delta
Laguerre Polynomials18.3)
1.17.23 δ ( x a ) = e ( x + a ) / 2 k = 0 L k ( x ) L k ( a ) .