About the Project

L%E2%80%99H%C3%B4pital%20rule%20for%20derivatives

AdvancedHelp

(0.003 seconds)

11—20 of 467 matching pages

11: 18.5 Explicit Representations
β–Ί
18.5.6 L n ( α ) ⁑ ( 1 x ) = ( 1 ) n n ! ⁒ x n + α + 1 ⁒ e 1 / x ⁒ d n d x n ⁑ ( x α 1 ⁒ e 1 / x ) .
β–ΊSimilarly in the cases of the ultraspherical polynomials C n ( Ξ» ) ⁑ ( x ) and the Laguerre polynomials L n ( Ξ± ) ⁑ ( x ) we assume that Ξ» > 1 2 , Ξ» 0 , and Ξ± > 1 , unless stated otherwise. … β–Ί
L 0 ⁑ ( x ) = 1 ,
β–Ί
L 6 ⁑ ( x ) = 1 720 ⁒ x 6 1 20 ⁒ x 5 + 5 8 ⁒ x 4 10 3 ⁒ x 3 + 15 2 ⁒ x 2 6 ⁒ x + 1 .
β–Ί
L 0 ( α ) ⁑ ( x ) = 1 ,
12: 23.3 Differential Equations
β–Ί
23.3.1 g 2 ⁑ = 60 ⁒ w 𝕃 βˆ– { 0 } w 4 ,
β–ΊGiven g 2 ⁑ and g 3 ⁑ there is a unique lattice 𝕃 such that (23.3.1) and (23.3.2) are satisfied. … β–ΊConversely, g 2 ⁑ , g 3 ⁑ , and the set { e 1 ⁑ , e 2 ⁑ , e 3 ⁑ } are determined uniquely by the lattice 𝕃 independently of the choice of generators. However, given any pair of generators 2 ⁒ Ο‰ 1 , 2 ⁒ Ο‰ 3 of 𝕃 , and with Ο‰ 2 defined by (23.2.1), we can identify the e j ⁑ individually, via … β–Ί
§23.3(ii) Differential Equations and Derivatives
13: 23.1 Special Notation
β–Ί β–Ίβ–Ίβ–Ίβ–Ί
𝕃 lattice in β„‚ .
primes derivatives with respect to the variable, except where indicated otherwise.
G × H Cartesian product of groups G and H , that is, the set of all pairs of elements ( g , h ) with group operation ( g 1 , h 1 ) + ( g 2 , h 2 ) = ( g 1 + g 2 , h 1 + h 2 ) .
β–ΊThe main functions treated in this chapter are the Weierstrass -function ⁑ ( z ) = ⁑ ( z | 𝕃 ) = ⁑ ( z ; g 2 ⁑ , g 3 ⁑ ) ; the Weierstrass zeta function ΞΆ ⁑ ( z ) = ΞΆ ⁑ ( z | 𝕃 ) = ΞΆ ⁑ ( z ; g 2 ⁑ , g 3 ⁑ ) ; the Weierstrass sigma function Οƒ ⁑ ( z ) = Οƒ ⁑ ( z | 𝕃 ) = Οƒ ⁑ ( z ; g 2 ⁑ , g 3 ⁑ ) ; the elliptic modular function Ξ» ⁑ ( Ο„ ) ; Klein’s complete invariant J ⁑ ( Ο„ ) ; Dedekind’s eta function Ξ· ⁑ ( Ο„ ) . …
14: 25.15 Dirichlet L -functions
§25.15 Dirichlet L -functions
β–Ί
§25.15(i) Definitions and Basic Properties
β–ΊThe notation L ⁑ ( s , Ο‡ ) was introduced by Dirichlet (1837) for the meromorphic continuation of the function defined by the series … … β–Ί
§25.15(ii) Zeros
15: 18.39 Applications in the Physical Sciences
β–Ίwhere L 2 is the (squared) angular momentum operator (14.30.12). … β–Ίwith an infinite set of orthonormal L 2 eigenfunctions … p here being the order of the Laguerre polynomial, L p ( 2 ⁒ l + 1 ) of Table 18.8.1, line 11, and l the angular momentum quantum number, and where … β–ΊThe bound state L 2 eigenfunctions of the radial Coulomb Schrödinger operator are discussed in §§18.39(i) and 18.39(ii), and the Ξ΄ -function normalized (non- L 2 ) in Chapter 33, where the solutions appear as Whittaker functions. … β–ΊThe fact that non- L 2 continuum scattering eigenstates may be expressed in terms or (infinite) sums of L 2 functions allows a reformulation of scattering theory in atomic physics wherein no non- L 2 functions need appear. …
16: 25.1 Special Notation
β–Ί β–Ίβ–Ίβ–Ί
k , m , n nonnegative integers.
primes on function symbols: derivatives with respect to argument.
β–ΊThe main related functions are the Hurwitz zeta function ΞΆ ⁑ ( s , a ) , the dilogarithm Li 2 ⁑ ( z ) , the polylogarithm Li s ⁑ ( z ) (also known as Jonquière’s function Ο• ⁑ ( z , s ) ), Lerch’s transcendent Ξ¦ ⁑ ( z , s , a ) , and the Dirichlet L -functions L ⁑ ( s , Ο‡ ) .
17: 18.14 Inequalities
β–Ί
18.14.8 e 1 2 ⁒ x ⁒ | L n ( α ) ⁑ ( x ) | L n ( α ) ⁑ ( 0 ) = ( α + 1 ) n n ! , 0 x < , α 0 .
β–Ί
18.14.12 ( L n ( α ) ⁑ ( x ) ) 2 L n 1 ( α ) ⁑ ( x ) ⁒ L n + 1 ( α ) ⁑ ( x ) , 0 x < , α 0 .
β–ΊLet the maxima x n , m , m = 0 , 1 , , n 1 , of | L n ( Ξ± ) ⁑ ( x ) | in [ 0 , ) be arranged so that … β–Ί
18.14.24 | L n ( Ξ± ) ⁑ ( x n , 0 ) | < | L n ( Ξ± ) ⁑ ( x n , 1 ) | < β‹― < | L n ( Ξ± ) ⁑ ( x n , n 1 ) | .
β–ΊThe successive maxima of | H n ⁑ ( x ) | form a decreasing sequence for x 0 , and an increasing sequence for x 0 . …
18: 18.18 Sums
β–Ί
Expansion of L 2 functions
β–ΊIn all three cases of Jacobi, Laguerre and Hermite, if f ⁑ ( x ) is L 2 on the corresponding interval with respect to the corresponding weight function and if a n , b n , d n are given by (18.18.1), (18.18.5), (18.18.7), respectively, then the respective series expansions (18.18.2), (18.18.4), (18.18.6) are valid with the sums converging in L 2 sense. … β–Ί
18.18.12 L n ( Ξ± ) ⁑ ( Ξ» ⁒ x ) L n ( Ξ± ) ⁑ ( 0 ) = β„“ = 0 n ( n β„“ ) ⁒ Ξ» β„“ ⁒ ( 1 Ξ» ) n β„“ ⁒ L β„“ ( Ξ± ) ⁑ ( x ) L β„“ ( Ξ± ) ⁑ ( 0 ) .
β–Ί
18.18.37 β„“ = 0 n L β„“ ( Ξ± ) ⁑ ( x ) = L n ( Ξ± + 1 ) ⁑ ( x ) ,
β–Ί
18.18.40 β„“ = 0 n ( n β„“ ) ⁒ H 2 ⁒ β„“ ⁑ ( x ) ⁒ H 2 ⁒ n 2 ⁒ β„“ ⁑ ( y ) = ( 1 ) n ⁒ 2 2 ⁒ n ⁒ n ! ⁒ L n ⁑ ( x 2 + y 2 ) .
19: 18.17 Integrals
β–Ί
18.17.2 0 x L m ⁑ ( y ) ⁒ L n ⁑ ( x y ) ⁒ d y = 0 x L m + n ⁑ ( y ) ⁒ d y = L m + n ⁑ ( x ) L m + n + 1 ⁑ ( x ) .
β–ΊFormulas (18.17.9), (18.17.10) and (18.17.11) are fractional generalizations of n -th derivative formulas which are, after substitution of (18.5.7), special cases of (15.5.4), (15.5.5) and (15.5.3), respectively. … β–Ί
18.17.15 e x ⁒ L n ( Ξ± ) ⁑ ( x ) = x e y ⁒ L n ( Ξ± + ΞΌ ) ⁑ ( y ) ⁒ ( y x ) ΞΌ 1 Ξ“ ⁑ ( ΞΌ ) ⁒ d y , ΞΌ > 0 .
β–ΊFormulas (18.17.14) and (18.17.15) are fractional generalizations of n -th derivative formulas which are, after substitution of (13.6.19), special cases of (13.3.18) and (13.3.20), respectively. … β–Ί
18.17.47 0 x t Ξ± ⁒ L m ( Ξ± ) ⁑ ( t ) L m ( Ξ± ) ⁑ ( 0 ) ⁒ ( x t ) Ξ² ⁒ L n ( Ξ² ) ⁑ ( x t ) L n ( Ξ² ) ⁑ ( 0 ) ⁒ d t = Ξ“ ⁑ ( Ξ± + 1 ) ⁒ Ξ“ ⁑ ( Ξ² + 1 ) Ξ“ ⁑ ( Ξ± + Ξ² + 2 ) ⁒ x Ξ± + Ξ² + 1 ⁒ L m + n ( Ξ± + Ξ² + 1 ) ⁑ ( x ) L m + n ( Ξ± + Ξ² + 1 ) ⁑ ( 0 ) .
20: 23.6 Relations to Other Functions
β–ΊIn this subsection 2 ⁒ Ο‰ 1 , 2 ⁒ Ο‰ 3 are any pair of generators of the lattice 𝕃 , and the lattice roots e 1 ⁑ , e 2 ⁑ , e 3 ⁑ are given by (23.3.9). … β–Ί β–Ί β–ΊAgain, in Equations (23.6.16)–(23.6.26), 2 ⁒ Ο‰ 1 , 2 ⁒ Ο‰ 3 are any pair of generators of the lattice 𝕃 and e 1 ⁑ , e 2 ⁑ , e 3 ⁑ are given by (23.3.9). … β–ΊAlso, 𝕃 1 , 𝕃 2 , 𝕃 3 are the lattices with generators ( 4 ⁒ K ⁑ , 2 ⁒ i ⁒ K ⁑ ) , ( 2 ⁒ K ⁑ 2 ⁒ i ⁒ K ⁑ , 2 ⁒ K ⁑ + 2 ⁒ i ⁒ K ⁑ ) , ( 2 ⁒ K ⁑ , 4 ⁒ i ⁒ K ⁑ ) , respectively. …