About the Project

Korteweg%E2%80%93de%20Vries%20equation

AdvancedHelp

(0.003 seconds)

11—20 of 536 matching pages

11: 23.21 Physical Applications
§23.21(ii) Nonlinear Evolution Equations
Airault et al. (1977) applies the function to an integrable classical many-body problem, and relates the solutions to nonlinear partial differential equations. For applications to soliton solutions of the Kortewegde Vries (KdV) equation see McKean and Moll (1999, p. 91), Deconinck and Segur (2000), and Walker (1996, §8.1). … Ellipsoidal coordinates ( ξ , η , ζ ) may be defined as the three roots ρ of the equation
12: 30.2 Differential Equations
§30.2 Differential Equations
§30.2(i) Spheroidal Differential Equation
The Liouville normal form of equation (30.2.1) is …
§30.2(iii) Special Cases
13: 15.10 Hypergeometric Differential Equation
§15.10 Hypergeometric Differential Equation
§15.10(i) Fundamental Solutions
This is the hypergeometric differential equation. … The ( 6 3 ) = 20 connection formulas for the principal branches of Kummer’s solutions are: …
14: 31.2 Differential Equations
§31.2 Differential Equations
§31.2(i) Heun’s Equation
§31.2(ii) Normal Form of Heun’s Equation
§31.2(v) Heun’s Equation Automorphisms
Composite Transformations
15: 29.2 Differential Equations
§29.2 Differential Equations
§29.2(i) Lamé’s Equation
§29.2(ii) Other Forms
Equation (29.2.10) is a special case of Heun’s equation (31.2.1).
16: Bibliography R
  • L. Robin (1957) Fonctions sphériques de Legendre et fonctions sphéroïdales. Tome I. Gauthier-Villars, Paris.
  • L. Robin (1958) Fonctions sphériques de Legendre et fonctions sphéroïdales. Tome II. Gauthier-Villars, Paris.
  • L. Robin (1959) Fonctions sphériques de Legendre et fonctions sphéroïdales. Tome III. Collection Technique et Scientifique du C. N. E. T. Gauthier-Villars, Paris.
  • V. Romanovski (1929) Sur quelques classes nouvelles de polynômes orthogonaux. C. R. Acad. Sci. Paris 188, pp. 1023–1025.
  • R. R. Rosales (1978) The similarity solution for the Korteweg-de Vries equation and the related Painlevé transcendent. Proc. Roy. Soc. London Ser. A 361, pp. 265–275.
  • 17: 22.19 Physical Applications
    Classical motion in one dimension is described by Newton’s equation
    §22.19(iii) Nonlinear ODEs and PDEs
    Many nonlinear ordinary and partial differential equations have solutions that may be expressed in terms of Jacobian elliptic functions. These include the time dependent, and time independent, nonlinear Schrödinger equations (NLSE) (Drazin and Johnson (1993, Chapter 2), Ablowitz and Clarkson (1991, pp. 42, 99)), the Kortewegde Vries (KdV) equation (Kruskal (1974), Li and Olver (2000)), the sine-Gordon equation, and others; see Drazin and Johnson (1993, Chapter 2) for an overview. … …
    18: Bibliography C
  • L. G. Cabral-Rosetti and M. A. Sanchis-Lozano (2000) Generalized hypergeometric functions and the evaluation of scalar one-loop integrals in Feynman diagrams. J. Comput. Appl. Math. 115 (1-2), pp. 93–99.
  • R. Campbell (1955) Théorie Générale de L’Équation de Mathieu et de quelques autres Équations différentielles de la mécanique. Masson et Cie, Paris (French).
  • M. Chellali (1988) Accélération de calcul de nombres de Bernoulli. J. Number Theory 28 (3), pp. 347–362 (French).
  • D. Colton and R. Kress (1998) Inverse Acoustic and Electromagnetic Scattering Theory. 2nd edition, Applied Mathematical Sciences, Vol. 93, Springer-Verlag, Berlin.
  • F. Cooper, A. Khare, and A. Saxena (2006) Exact elliptic compactons in generalized Korteweg-de Vries equations. Complexity 11 (6), pp. 30–34.
  • 19: 32.2 Differential Equations
    §32.2 Differential Equations
    §32.2(i) Introduction
    The six Painlevé equations P I P VI  are as follows: …
    §32.2(ii) Renormalizations
    20: 27.2 Functions
    Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. … This result, first proved in Hadamard (1896) and de la Vallée Poussin (1896a, b), is known as the prime number theorem. …
    Table 27.2.1: Primes.
    n p n p n + 10 p n + 20 p n + 30 p n + 40 p n + 50 p n + 60 p n + 70 p n + 80 p n + 90
    Table 27.2.2: Functions related to division.
    n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n )
    7 6 2 8 20 8 6 42 33 20 4 48 46 22 4 72
    11 10 2 12 24 8 8 60 37 36 2 38 50 20 6 93