About the Project

Kelvin-function analogs

AdvancedHelp

(0.003 seconds)

11—20 of 56 matching pages

11: 28.30 Expansions in Series of Eigenfunctions
β–ΊFor analogous results to those of §28.19, see Schäfke (1960, 1961b), and Meixner et al. (1980, §1.1.11).
12: Bille C. Carlson
β–ΊIn Permutation symmetry for theta functions (2011) he found an analogous hidden symmetry between theta functions. …
13: 6.4 Analytic Continuation
β–Ί
6.4.4 Ci ⁑ ( z ⁒ e ± Ο€ ⁒ i ) = ± Ο€ ⁒ i + Ci ⁑ ( z ) ,
14: 6.2 Definitions and Interrelations
β–Ί
Hyperbolic Analogs of the Sine and Cosine Integrals
15: 24.16 Generalizations
β–Ί
§24.16(i) Higher-Order Analogs
β–Ί
§24.16(ii) Character Analogs
β–ΊIn no particular order, other generalizations include: Bernoulli numbers and polynomials with arbitrary complex index (Butzer et al. (1992)); Euler numbers and polynomials with arbitrary complex index (Butzer et al. (1994)); q-analogs (Carlitz (1954a), Andrews and Foata (1980)); conjugate Bernoulli and Euler polynomials (Hauss (1997, 1998)); Bernoulli–Hurwitz numbers (Katz (1975)); poly-Bernoulli numbers (Kaneko (1997)); Universal Bernoulli numbers (Clarke (1989)); p -adic integer order Bernoulli numbers (Adelberg (1996)); p -adic q -Bernoulli numbers (Kim and Kim (1999)); periodic Bernoulli numbers (Berndt (1975b)); cotangent numbers (Girstmair (1990b)); Bernoulli–Carlitz numbers (Goss (1978)); Bernoulli–Padé numbers (Dilcher (2002)); Bernoulli numbers belonging to periodic functions (Urbanowicz (1988)); cyclotomic Bernoulli numbers (Girstmair (1990a)); modified Bernoulli numbers (Zagier (1998)); higher-order Bernoulli and Euler polynomials with multiple parameters (Erdélyi et al. (1953a, §§1.13.1, 1.14.1)).
16: 17.1 Special Notation
β–ΊThe main functions treated in this chapter are the basic hypergeometric (or q -hypergeometric) function Ο• s r ⁑ ( a 1 , a 2 , , a r ; b 1 , b 2 , , b s ; q , z ) , the bilateral basic hypergeometric (or bilateral q -hypergeometric) function ψ s r ⁑ ( a 1 , a 2 , , a r ; b 1 , b 2 , , b s ; q , z ) , and the q -analogs of the Appell functions Ξ¦ ( 1 ) ⁑ ( a ; b , b ; c ; q ; x , y ) , Ξ¦ ( 2 ) ⁑ ( a ; b , b ; c , c ; q ; x , y ) , Ξ¦ ( 3 ) ⁑ ( a , a ; b , b ; c ; q ; x , y ) , and Ξ¦ ( 4 ) ⁑ ( a , b ; c , c ; q ; x , y ) . …
17: 31.12 Confluent Forms of Heun’s Equation
β–ΊThis is analogous to the derivation of the confluent hypergeometric equation from the hypergeometric equation in §13.2(i). …
18: 2.9 Difference Equations
β–ΊThis situation is analogous to second-order homogeneous linear differential equations with an irregular singularity of rank 1 at infinity (§2.7(ii)). … β–ΊFor analogous results for difference equations of the form … β–ΊFor asymptotic approximations to solutions of second-order difference equations analogous to the Liouville–Green (WKBJ) approximation for differential equations (§2.7(iii)) see Spigler and Vianello (1992, 1997) and Spigler et al. (1999). …
19: 10.44 Sums
β–ΊFor results analogous to (10.23.7) and (10.23.8) see Watson (1944, §§11.3 and 11.41). …
20: 28.7 Analytic Continuation of Eigenvalues
β–ΊAnalogous statements hold for a 2 ⁒ n + 1 ⁑ ( q ) , b 2 ⁒ n + 1 ⁑ ( q ) , and b 2 ⁒ n + 2 ⁑ ( q ) , also for n = 0 , 1 , 2 , . …