About the Project

Jacobi theta functions

AdvancedHelp

(0.006 seconds)

11—20 of 45 matching pages

11: 20.9 Relations to Other Functions
20.9.1 k = θ 2 2 ( 0 | τ ) / θ 3 2 ( 0 | τ )
20.9.3 R F ( θ 2 2 ( z , q ) θ 2 2 ( 0 , q ) , θ 3 2 ( z , q ) θ 3 2 ( 0 , q ) , θ 4 2 ( z , q ) θ 4 2 ( 0 , q ) ) = θ 1 ( 0 , q ) θ 1 ( z , q ) z ,
20.9.4 R F ( 0 , θ 3 4 ( 0 , q ) , θ 4 4 ( 0 , q ) ) = 1 2 π ,
The relations (20.9.1) and (20.9.2) between k and τ (or q ) are solutions of Jacobi’s inversion problem; see Baker (1995) and Whittaker and Watson (1927, pp. 480–485). …
12: 27.13 Functions
Jacobi (1829) notes that r 2 ( n ) is the coefficient of x n in the square of the theta function ϑ ( x ) :
27.13.4 ϑ ( x ) = 1 + 2 m = 1 x m 2 , | x | < 1 .
(In §20.2(i), ϑ ( x ) is denoted by θ 3 ( 0 , x ) .) …
27.13.5 ( ϑ ( x ) ) 2 = 1 + n = 1 r 2 ( n ) x n .
27.13.6 ( ϑ ( x ) ) 2 = 1 + 4 n = 1 ( δ 1 ( n ) δ 3 ( n ) ) x n ,
13: 20.3 Graphics
§20.3(i) θ -Functions: Real Variable and Real Nome
§20.3(ii) θ -Functions: Complex Variable and Real Nome
In the graphics shown in this subsection, height corresponds to the absolute value of the function and color to the phase. …
§20.3(iii) θ -Functions: Real Variable and Complex Lattice Parameter
In the graphics shown in this subsection, height corresponds to the absolute value of the function and color to the phase. …
14: 22.16 Related Functions
Relation to Theta Functions
15: 20.5 Infinite Products and Related Results
20.5.1 θ 1 ( z , q ) = 2 q 1 / 4 sin z n = 1 ( 1 q 2 n ) ( 1 2 q 2 n cos ( 2 z ) + q 4 n ) ,
20.5.2 θ 2 ( z , q ) = 2 q 1 / 4 cos z n = 1 ( 1 q 2 n ) ( 1 + 2 q 2 n cos ( 2 z ) + q 4 n ) ,
20.5.3 θ 3 ( z , q ) = n = 1 ( 1 q 2 n ) ( 1 + 2 q 2 n 1 cos ( 2 z ) + q 4 n 2 ) ,
20.5.4 θ 4 ( z , q ) = n = 1 ( 1 q 2 n ) ( 1 2 q 2 n 1 cos ( 2 z ) + q 4 n 2 ) .
Jacobi’s Triple Product
16: 20.12 Mathematical Applications
§20.12 Mathematical Applications
§20.12(i) Number Theory
§20.12(ii) Uniformization and Embedding of Complex Tori
Thus theta functions “uniformize” the complex torus. …
17: 20.7 Identities
20.7.1 θ 3 2 ( 0 , q ) θ 3 2 ( z , q ) = θ 4 2 ( 0 , q ) θ 4 2 ( z , q ) + θ 2 2 ( 0 , q ) θ 2 2 ( z , q ) ,
20.7.2 θ 3 2 ( 0 , q ) θ 4 2 ( z , q ) = θ 2 2 ( 0 , q ) θ 1 2 ( z , q ) + θ 4 2 ( 0 , q ) θ 3 2 ( z , q ) ,
20.7.5 θ 3 4 ( 0 , q ) = θ 2 4 ( 0 , q ) + θ 4 4 ( 0 , q ) .
20.7.28 θ 3 ( z | τ + 1 ) = θ 4 ( z | τ ) ,
20.7.29 θ 4 ( z | τ + 1 ) = θ 3 ( z | τ ) .
18: 22.19 Physical Applications
22.19.2 sin ( 1 2 θ ( t ) ) = sin ( 1 2 α ) sn ( t + K , sin ( 1 2 α ) ) ,
22.19.3 θ ( t ) = 2 am ( t E / 2 , 2 / E ) ,
19: 20.6 Power Series
20.6.2 θ 1 ( π z | τ ) = π z θ 1 ( 0 | τ ) exp ( j = 1 1 2 j δ 2 j ( τ ) z 2 j ) ,
20.6.3 θ 2 ( π z | τ ) = θ 2 ( 0 | τ ) exp ( j = 1 1 2 j α 2 j ( τ ) z 2 j ) ,
20.6.4 θ 3 ( π z | τ ) = θ 3 ( 0 | τ ) exp ( j = 1 1 2 j β 2 j ( τ ) z 2 j ) ,
20.6.5 θ 4 ( π z | τ ) = θ 4 ( 0 | τ ) exp ( j = 1 1 2 j γ 2 j ( τ ) z 2 j ) .
20: 21.2 Definitions