About the Project

Jacobi identity

AdvancedHelp

(0.002 seconds)

21—26 of 26 matching pages

21: Bibliography L
  • J. Lepowsky and S. Milne (1978) Lie algebraic approaches to classical partition identities. Adv. in Math. 29 (1), pp. 15–59.
  • J. Lepowsky and R. L. Wilson (1982) A Lie theoretic interpretation and proof of the Rogers-Ramanujan identities. Adv. in Math. 45 (1), pp. 21–72.
  • J. Letessier (1995) Co-recursive associated Jacobi polynomials. J. Comput. Appl. Math. 57 (1-2), pp. 203–213.
  • Y. L. Luke and J. Wimp (1963) Jacobi polynomial expansions of a generalized hypergeometric function over a semi-infinite ray. Math. Comp. 17 (84), pp. 395–404.
  • 22: 18.21 Hahn Class: Interrelations
    Hahn Jacobi
    18.21.5 lim N Q n ( N x ; α , β , N ) = P n ( α , β ) ( 1 2 x ) P n ( α , β ) ( 1 ) .
    See accompanying text
    Figure 18.21.1: Askey scheme. … Magnify
    23: Bibliography M
  • S. C. Milne (1985b) An elementary proof of the Macdonald identities for A l ( 1 ) . Adv. in Math. 57 (1), pp. 34–70.
  • S. C. Milne (2002) Infinite families of exact sums of squares formulas, Jacobi elliptic functions, continued fractions, and Schur functions. Ramanujan J. 6 (1), pp. 7–149.
  • S. C. Milne (1996) New infinite families of exact sums of squares formulas, Jacobi elliptic functions, and Ramanujan’s tau function. Proc. Nat. Acad. Sci. U.S.A. 93 (26), pp. 15004–15008.
  • 24: 17.8 Special Cases of ψ r r Functions
    Jacobi’s Triple Product
    Quintuple Product Identity
    25: 18.36 Miscellaneous Polynomials
    §18.36(i) Jacobi-Type Polynomials
    These are OP’s on the interval ( 1 , 1 ) with respect to an orthogonality measure obtained by adding constant multiples of “Dirac delta weights” at 1 and 1 to the weight function for the Jacobi polynomials. … The possibility of generalization to α = k , for k , is implicit in the identity Szegő (1975, page 102), …
    18.36.7 T k ( y ) x y ′′ + x k x + k ( ( x + k + 1 ) y y ) = ( n 1 ) y .
    26: Bibliography W
  • H. S. Wilf and D. Zeilberger (1992a) An algorithmic proof theory for hypergeometric (ordinary and “ q ”) multisum/integral identities. Invent. Math. 108, pp. 575–633.
  • H. S. Wilf and D. Zeilberger (1992b) Rational function certification of multisum/integral/“ q identities. Bull. Amer. Math. Soc. (N.S.) 27 (1), pp. 148–153.
  • J. Wimp (1987) Explicit formulas for the associated Jacobi polynomials and some applications. Canad. J. Math. 39 (4), pp. 983–1000.
  • R. Wong and J.-M. Zhang (1994a) Asymptotic monotonicity of the relative extrema of Jacobi polynomials. Canad. J. Math. 46 (6), pp. 1318–1337.
  • R. Wong and Y.-Q. Zhao (2003) Estimates for the error term in a uniform asymptotic expansion of the Jacobi polynomials. Anal. Appl. (Singap.) 1 (2), pp. 213–241.