About the Project

Jacobi epsilon function

AdvancedHelp

(0.004 seconds)

11—14 of 14 matching pages

11: 18.16 Zeros
§18.16(ii) Jacobi
Let θ n , m = θ n , m ( α , β ) , m = 1 , 2 , , n , denote the zeros of P n ( α , β ) ( cos θ ) as function of θ with … Then …
Asymptotic Behavior
Jacobi
12: 31.11 Expansions in Series of Hypergeometric Functions
§31.11 Expansions in Series of Hypergeometric Functions
In each case P j 6 can be expressed in terms of a Jacobi polynomial (§18.3). …For Heun functions31.4) they are convergent inside the ellipse . Every Heun function can be represented by a series of Type II. …
13: Errata
  • Subsection 33.14(iv)

    Just below (33.14.9), the constraint described in the text “ < ( ϵ ) 1 / 2 when ϵ < 0 ,” was removed. In Equation (33.14.13), the constraint ϵ 1 , ϵ 2 > 0 was added. In the line immediately below (33.14.13), it was clarified that s ( ϵ , ; r ) is exp ( r / n ) times a polynomial in r / n , instead of simply a polynomial in r . In Equation (33.14.14), a second equality was added which relates ϕ n , ( r ) to Laguerre polynomials. A sentence was added immediately below (33.14.15) indicating that the functions ϕ n , , n = , + 1 , , do not form a complete orthonormal system.

  • Chapter 35 Functions of Matrix Argument

    The generalized hypergeometric function of matrix argument F q p ( a 1 , , a p ; b 1 , , b q ; 𝐓 ) , was linked inadvertently as its single variable counterpart F q p ( a 1 , , a p ; b 1 , , b q ; 𝐓 ) . Furthermore, the Jacobi function of matrix argument P ν ( γ , δ ) ( 𝐓 ) , and the Laguerre function of matrix argument L ν ( γ ) ( 𝐓 ) , were also linked inadvertently (and incorrectly) in terms of the single variable counterparts given by P ν ( γ , δ ) ( 𝐓 ) , and L ν ( γ ) ( 𝐓 ) . In order to resolve these inconsistencies, these functions now link correctly to their respective definitions.

  • Equation (22.19.2)
    22.19.2 sin ( 1 2 θ ( t ) ) = sin ( 1 2 α ) sn ( t + K , sin ( 1 2 α ) )

    Originally the first argument to the function sn was given incorrectly as t . The correct argument is t + K .

    Reported 2014-03-05 by Svante Janson.

  • Table 22.4.3

    Originally a minus sign was missing in the entries for cd u and dc u in the second column (headed z + K + i K ). The correct entries are k 1 ns z and k sn z . Note: These entries appear online but not in the published print edition. More specifically, Table 22.4.3 in the published print edition is restricted to the three Jacobian elliptic functions sn , cn , dn , whereas Table 22.4.3 covers all 12 Jacobian elliptic functions.

    u
    z + K z + K + i K z + i K z + 2 K z + 2 K + 2 i K z + 2 i K
    cd u sn z k 1 ns z k 1 dc z cd z cd z cd z
    dc u ns z k sn z k cd z dc z dc z dc z

    Reported 2014-02-28 by Svante Janson.

  • Equation (22.16.14)
    22.16.14 ( x , k ) = 0 sn ( x , k ) 1 k 2 t 2 1 t 2 d t

    Originally this equation appeared with the upper limit of integration as x , rather than sn ( x , k ) .

    Reported 2010-07-08 by Charles Karney.

  • 14: Bibliography C
  • B. C. Carlson (1985) The hypergeometric function and the R -function near their branch points. Rend. Sem. Mat. Univ. Politec. Torino (Special Issue), pp. 63–89.
  • Y. Chow, L. Gatteschi, and R. Wong (1994) A Bernstein-type inequality for the Jacobi polynomial. Proc. Amer. Math. Soc. 121 (3), pp. 703–709.
  • A. P. Clarke and W. Marwood (1984) A compact mathematical function package. Australian Computer Journal 16 (3), pp. 107–114.
  • Th. Clausen (1828) Über die Fälle, wenn die Reihe von der Form y = 1 + α 1 β γ x + α α + 1 1 2 β β + 1 γ γ + 1 x 2 + etc. ein Quadrat von der Form z = 1 + α 1 β γ δ ϵ x + α α + 1 1 2 β β + 1 γ γ + 1 δ δ + 1 ϵ ϵ + 1 x 2 + etc. hat. J. Reine Angew. Math. 3, pp. 89–91.
  • H. S. Cohl (2013a) Fourier, Gegenbauer and Jacobi expansions for a power-law fundamental solution of the polyharmonic equation and polyspherical addition theorems. SIGMA Symmetry Integrability Geom. Methods Appl. 9, pp. Paper 042, 26.