About the Project

Jacobi%E2%80%99s

AdvancedHelp

(0.002 seconds)

11—20 of 622 matching pages

11: 19.2 Definitions
Because s 2 is a polynomial, we have …
§19.2(ii) Legendre’s Integrals
Legendre’s complementary complete elliptic integrals are defined via …
§19.2(iii) Bulirsch’s Integrals
Bulirsch’s integrals are linear combinations of Legendre’s integrals that are chosen to facilitate computational application of Bartky’s transformation (Bartky (1938)). …
12: 22.21 Tables
§22.21 Tables
Spenceley and Spenceley (1947) tabulates sn ( K x , k ) , cn ( K x , k ) , dn ( K x , k ) , am ( K x , k ) , ( K x , k ) for arcsin k = 1 ( 1 ) 89 and x = 0 ( 1 90 ) 1 to 12D, or 12 decimals of a radian in the case of am ( K x , k ) . … Lawden (1989, pp. 280–284 and 293–297) tabulates sn ( x , k ) , cn ( x , k ) , dn ( x , k ) , ( x , k ) , Z ( x | k ) to 5D for k = 0.1 ( .1 ) 0.9 , x = 0 ( .1 ) X , where X ranges from 1. … Zhang and Jin (1996, p. 678) tabulates sn ( K x , k ) , cn ( K x , k ) , dn ( K x , k ) for k = 1 4 , 1 2 and x = 0 ( .1 ) 4 to 7D. …
13: 22.7 Landen Transformations
22.7.2 sn ( z , k ) = ( 1 + k 1 ) sn ( z / ( 1 + k 1 ) , k 1 ) 1 + k 1 sn 2 ( z / ( 1 + k 1 ) , k 1 ) ,
22.7.3 cn ( z , k ) = cn ( z / ( 1 + k 1 ) , k 1 ) dn ( z / ( 1 + k 1 ) , k 1 ) 1 + k 1 sn 2 ( z / ( 1 + k 1 ) , k 1 ) ,
22.7.4 dn ( z , k ) = dn 2 ( z / ( 1 + k 1 ) , k 1 ) ( 1 k 1 ) 1 + k 1 dn 2 ( z / ( 1 + k 1 ) , k 1 ) .
22.7.6 sn ( z , k ) = ( 1 + k 2 ) sn ( z / ( 1 + k 2 ) , k 2 ) cn ( z / ( 1 + k 2 ) , k 2 ) dn ( z / ( 1 + k 2 ) , k 2 ) ,
22.7.8 dn ( z , k ) = ( 1 k 2 ) ( dn 2 ( z / ( 1 + k 2 ) , k 2 ) + k 2 ) k 2 2 dn ( z / ( 1 + k 2 ) , k 2 ) .
14: 22.4 Periods, Poles, and Zeros
For example, the poles of sn ( z , k ) , abbreviated as sn in the following tables, are at z = 2 m K + ( 2 n + 1 ) i K . … Then: (a) In any lattice unit cell p q ( z , k ) has a simple zero at z = p and a simple pole at z = q . (b) The difference between p and the nearest q is a half-period of p q ( z , k ) . This half-period will be plus or minus a member of the triple K , i K , K + i K ; the other two members of this triple are quarter periods of p q ( z , k ) . … For example, sn ( z + K , k ) = cd ( z , k ) . …
15: 20.4 Values at z = 0
20.4.1 θ 1 ( 0 , q ) = θ 2 ( 0 , q ) = θ 3 ( 0 , q ) = θ 4 ( 0 , q ) = 0 ,
Jacobis Identity
20.4.6 θ 1 ( 0 , q ) = θ 2 ( 0 , q ) θ 3 ( 0 , q ) θ 4 ( 0 , q ) .
20.4.7 θ 1 ′′ ( 0 , q ) = θ 2 ′′′ ( 0 , q ) = θ 3 ′′′ ( 0 , q ) = θ 4 ′′′ ( 0 , q ) = 0 .
20.4.12 θ 1 ′′′ ( 0 , q ) θ 1 ( 0 , q ) = θ 2 ′′ ( 0 , q ) θ 2 ( 0 , q ) + θ 3 ′′ ( 0 , q ) θ 3 ( 0 , q ) + θ 4 ′′ ( 0 , q ) θ 4 ( 0 , q ) .
16: 20.7 Identities
20.7.6 θ 4 2 ( 0 , q ) θ 1 ( w + z , q ) θ 1 ( w z , q ) = θ 3 2 ( w , q ) θ 2 2 ( z , q ) θ 2 2 ( w , q ) θ 3 2 ( z , q ) ,
20.7.7 θ 4 2 ( 0 , q ) θ 2 ( w + z , q ) θ 2 ( w z , q ) = θ 4 2 ( w , q ) θ 2 2 ( z , q ) θ 1 2 ( w , q ) θ 3 2 ( z , q ) ,
20.7.8 θ 4 2 ( 0 , q ) θ 3 ( w + z , q ) θ 3 ( w z , q ) = θ 4 2 ( w , q ) θ 3 2 ( z , q ) θ 1 2 ( w , q ) θ 2 2 ( z , q ) ,
20.7.10 θ 1 ( 2 z , q ) = 2 θ 1 ( z , q ) θ 2 ( z , q ) θ 3 ( z , q ) θ 4 ( z , q ) θ 2 ( 0 , q ) θ 3 ( 0 , q ) θ 4 ( 0 , q ) .
§20.7(v) Watson’s Identities
17: 22.1 Special Notation
The functions treated in this chapter are the three principal Jacobian elliptic functions sn ( z , k ) , cn ( z , k ) , dn ( z , k ) ; the nine subsidiary Jacobian elliptic functions cd ( z , k ) , sd ( z , k ) , nd ( z , k ) , dc ( z , k ) , nc ( z , k ) , sc ( z , k ) , ns ( z , k ) , ds ( z , k ) , cs ( z , k ) ; the amplitude function am ( x , k ) ; Jacobis epsilon and zeta functions ( x , k ) and Z ( x | k ) . … The notation sn ( z , k ) , cn ( z , k ) , dn ( z , k ) is due to Gudermann (1838), following Jacobi (1827); that for the subsidiary functions is due to Glaisher (1882). Other notations for sn ( z , k ) are sn ( z | m ) and sn ( z , m ) with m = k 2 ; see Abramowitz and Stegun (1964) and Walker (1996). …
18: 18.7 Interrelations and Limit Relations
Ultraspherical and Jacobi
Chebyshev, Ultraspherical, and Jacobi
Legendre, Ultraspherical, and Jacobi
Jacobi Laguerre
Jacobi Hermite
19: 22.14 Integrals
See §22.16(i) for am ( z , k ) . …
20: 20.11 Generalizations and Analogs
§20.11(ii) Ramanujan’s Theta Function and q -Series
This is Jacobis inversion problem of §20.9(ii). … Each provides an extension of Jacobis inversion problem. … For m = 1 , 2 , 3 , 4 , n = 1 , 2 , 3 , 4 , and m n , define twelve combined theta functions φ m , n ( z , q ) by …