About the Project

Jacobi%20nome

AdvancedHelp

(0.001 seconds)

11—20 of 215 matching pages

11: 20.3 Graphics
§20.3(i) θ -Functions: Real Variable and Real Nome
See accompanying text
Figure 20.3.2: θ 1 ( π x , q ) , 0 x 2 , q = 0. … Magnify
See accompanying text
Figure 20.3.3: θ 2 ( π x , q ) , 0 x 2 , q = 0. … Magnify
§20.3(ii) θ -Functions: Complex Variable and Real Nome
See accompanying text
Figure 20.3.18: θ 1 ( 0.1 | u + i v ) , 1 u 1 , 0.005 v 0.5 . …1 of z is chosen arbitrarily since θ 1 vanishes identically when z = 0 . Magnify 3D Help
12: 20.1 Special Notation
The main functions treated in this chapter are the theta functions θ j ( z | τ ) = θ j ( z , q ) where j = 1 , 2 , 3 , 4 and q = e i π τ . When τ is fixed the notation is often abbreviated in the literature as θ j ( z ) , or even as simply θ j , it being then understood that the argument is the primary variable. … Primes on the θ symbols indicate derivatives with respect to the argument of the θ function. … Jacobi’s original notation: Θ ( z | τ ) , Θ 1 ( z | τ ) , H ( z | τ ) , H 1 ( z | τ ) , respectively, for θ 4 ( u | τ ) , θ 3 ( u | τ ) , θ 1 ( u | τ ) , θ 2 ( u | τ ) , where u = z / θ 3 2 ( 0 | τ ) . … Neville’s notation: θ s ( z | τ ) , θ c ( z | τ ) , θ d ( z | τ ) , θ n ( z | τ ) , respectively, for θ 3 2 ( 0 | τ ) θ 1 ( u | τ ) / θ 1 ( 0 | τ ) , θ 2 ( u | τ ) / θ 2 ( 0 | τ ) , θ 3 ( u | τ ) / θ 3 ( 0 | τ ) , θ 4 ( u | τ ) / θ 4 ( 0 | τ ) , where again u = z / θ 3 2 ( 0 | τ ) . …
13: 20.15 Tables
This reference gives θ j ( x , q ) , j = 1 , 2 , 3 , 4 , and their logarithmic x -derivatives to 4D for x / π = 0 ( .1 ) 1 , α = 0 ( 9 ) 90 , where α is the modular angle given by
20.15.1 sin α = θ 2 2 ( 0 , q ) / θ 3 2 ( 0 , q ) = k .
Spenceley and Spenceley (1947) tabulates θ 1 ( x , q ) / θ 2 ( 0 , q ) , θ 2 ( x , q ) / θ 2 ( 0 , q ) , θ 3 ( x , q ) / θ 4 ( 0 , q ) , θ 4 ( x , q ) / θ 4 ( 0 , q ) to 12D for u = 0 ( 1 ) 90 , α = 0 ( 1 ) 89 , where u = 2 x / ( π θ 3 2 ( 0 , q ) ) and α is defined by (20.15.1), together with the corresponding values of θ 2 ( 0 , q ) and θ 4 ( 0 , q ) . Lawden (1989, pp. 270–279) tabulates θ j ( x , q ) , j = 1 , 2 , 3 , 4 , to 5D for x = 0 ( 1 ) 90 , q = 0.1 ( .1 ) 0.9 , and also q to 5D for k 2 = 0 ( .01 ) 1 . Tables of Neville’s theta functions θ s ( x , q ) , θ c ( x , q ) , θ d ( x , q ) , θ n ( x , q ) (see §20.1) and their logarithmic x -derivatives are given in Abramowitz and Stegun (1964, pp. 582–585) to 9D for ε , α = 0 ( 5 ) 90 , where (in radian measure) ε = x / θ 3 2 ( 0 , q ) = π x / ( 2 K ( k ) ) , and α is defined by (20.15.1). …
14: 20.2 Definitions and Periodic Properties
§20.2(i) Fourier Series
Corresponding expansions for θ j ( z | τ ) , j = 1 , 2 , 3 , 4 , can be found by differentiating (20.2.1)–(20.2.4) with respect to z . … For fixed τ , each θ j ( z | τ ) is an entire function of z with period 2 π ; θ 1 ( z | τ ) is odd in z and the others are even. For fixed z , each of θ 1 ( z | τ ) / sin z , θ 2 ( z | τ ) / cos z , θ 3 ( z | τ ) , and θ 4 ( z | τ ) is an analytic function of τ for τ > 0 , with a natural boundary τ = 0 , and correspondingly, an analytic function of q for | q | < 1 with a natural boundary | q | = 1 . … For m , n , the z -zeros of θ j ( z | τ ) , j = 1 , 2 , 3 , 4 , are ( m + n τ ) π , ( m + 1 2 + n τ ) π , ( m + 1 2 + ( n + 1 2 ) τ ) π , ( m + ( n + 1 2 ) τ ) π respectively.
15: 20.5 Infinite Products and Related Results
20.5.1 θ 1 ( z , q ) = 2 q 1 / 4 sin z n = 1 ( 1 q 2 n ) ( 1 2 q 2 n cos ( 2 z ) + q 4 n ) ,
20.5.2 θ 2 ( z , q ) = 2 q 1 / 4 cos z n = 1 ( 1 q 2 n ) ( 1 + 2 q 2 n cos ( 2 z ) + q 4 n ) ,
20.5.3 θ 3 ( z , q ) = n = 1 ( 1 q 2 n ) ( 1 + 2 q 2 n 1 cos ( 2 z ) + q 4 n 2 ) ,
20.5.4 θ 4 ( z , q ) = n = 1 ( 1 q 2 n ) ( 1 2 q 2 n 1 cos ( 2 z ) + q 4 n 2 ) .
Jacobi’s Triple Product
16: 20.9 Relations to Other Functions
20.9.1 k = θ 2 2 ( 0 | τ ) / θ 3 2 ( 0 | τ )
K ( k ) = 1 2 π θ 3 2 ( 0 | τ ) ,
20.9.3 R F ( θ 2 2 ( z , q ) θ 2 2 ( 0 , q ) , θ 3 2 ( z , q ) θ 3 2 ( 0 , q ) , θ 4 2 ( z , q ) θ 4 2 ( 0 , q ) ) = θ 1 ( 0 , q ) θ 1 ( z , q ) z ,
20.9.4 R F ( 0 , θ 3 4 ( 0 , q ) , θ 4 4 ( 0 , q ) ) = 1 2 π ,
The relations (20.9.1) and (20.9.2) between k and τ (or q ) are solutions of Jacobi’s inversion problem; see Baker (1995) and Whittaker and Watson (1927, pp. 480–485). …
17: 22.3 Graphics
Line graphs of the functions sn ( x , k ) , cn ( x , k ) , dn ( x , k ) , cd ( x , k ) , sd ( x , k ) , nd ( x , k ) , dc ( x , k ) , nc ( x , k ) , sc ( x , k ) , ns ( x , k ) , ds ( x , k ) , and cs ( x , k ) for representative values of real x and real k illustrating the near trigonometric ( k = 0 ), and near hyperbolic ( k = 1 ) limits. … sn ( x , k ) , cn ( x , k ) , and dn ( x , k ) as functions of real arguments x and k . …
See accompanying text
Figure 22.3.13: sn ( x , k ) for k = 1 e n , n = 0 to 20, 5 π x 5 π . Magnify 3D Help
See accompanying text
Figure 22.3.14: cn ( x , k ) for k = 1 e n , n = 0 to 20, 5 π x 5 π . Magnify 3D Help
See accompanying text
Figure 22.3.15: dn ( x , k ) for k = 1 e n , n = 0 to 20, 5 π x 5 π . Magnify 3D Help
18: 23.15 Definitions
In §§23.1523.19, k and k ( ) denote the Jacobi modulus and complementary modulus, respectively, and q = e i π τ ( τ > 0 ) denotes the nome; compare §§20.1 and 22.1. …
23.15.6 λ ( τ ) = θ 2 4 ( 0 , q ) θ 3 4 ( 0 , q ) ;
23.15.7 J ( τ ) = ( θ 2 8 ( 0 , q ) + θ 3 8 ( 0 , q ) + θ 4 8 ( 0 , q ) ) 3 54 ( θ 1 ( 0 , q ) ) 8 ,
23.15.8 θ 1 ( 0 , q ) = θ 1 ( z , q ) / z | z = 0 .
19: 22.20 Methods of Computation
To compute sn , cn , dn to 10D when x = 0.8 , k = 0.65 . … If either τ or q = e i π τ is given, then we use k = θ 2 2 ( 0 , q ) / θ 3 2 ( 0 , q ) , k = θ 4 2 ( 0 , q ) / θ 3 2 ( 0 , q ) , K = 1 2 π θ 3 2 ( 0 , q ) , and K = i τ K , obtaining the values of the theta functions as in §20.14. …
§22.20(vi) Related Functions
Jacobi’s zeta function can then be found by use of (22.16.32). …
20: 22.8 Addition Theorems
22.8.1 sn ( u + v ) = sn u cn v dn v + sn v cn u dn u 1 k 2 sn 2 u sn 2 v ,
22.8.14 sn ( u + v ) = sn u cn u dn v + sn v cn v dn u cn u cn v + sn u dn u sn v dn v ,
22.8.15 cn ( u + v ) = sn u cn u dn v sn v cn v dn u sn u cn v dn v sn v cn u dn u ,
22.8.17 dn ( u + v ) = sn u cn v dn u sn v cn u dn v sn u cn v dn v sn v cn u dn u ,
22.8.23 | sn z 1 cn z 1 cn z 1 dn z 1 cn z 1 dn z 1 sn z 2 cn z 2 cn z 2 dn z 2 cn z 2 dn z 2 sn z 3 cn z 3 cn z 3 dn z 3 cn z 3 dn z 3 sn z 4 cn z 4 cn z 4 dn z 4 cn z 4 dn z 4 | = 0 .