About the Project

Jacobi symbol

AdvancedHelp

(0.003 seconds)

1—10 of 41 matching pages

1: 27.9 Quadratic Characters
27.9.3 ( p | q ) ( q | p ) = ( 1 ) ( p 1 ) ( q 1 ) / 4 .
If an odd integer P has prime factorization P = r = 1 ν ( n ) p r a r , then the Jacobi symbol ( n | P ) is defined by ( n | P ) = r = 1 ν ( n ) ( n | p r ) a r , with ( n | 1 ) = 1 . The Jacobi symbol ( n | P ) is a Dirichlet character (mod P ). …
2: 27.1 Special Notation
d , k , m , n positive integers (unless otherwise indicated).
( n | P ) Jacobi symbol; see §27.9.
3: 20.1 Special Notation
Primes on the θ symbols indicate derivatives with respect to the argument of the θ function. …
4: 18.30 Associated OP’s
18.30.5 ( 1 ) n ( α + β + c + 1 ) n n ! P n ( α , β ) ( x ; c ) ( α + β + 2 c + 1 ) n ( β + c + 1 ) n = = 0 n ( n ) ( n + α + β + 2 c + 1 ) ( c + 1 ) ( β + c + 1 ) ( 1 2 x + 1 2 ) F 3 4 ( n , n + + α + β + 2 c + 1 , β + c , c β + + c + 1 , + c + 1 , α + β + 2 c ; 1 ) ,
5: 18.12 Generating Functions
18.12.2_5 F 1 2 ( γ , α + β + 1 γ α + 1 ; 1 R z 2 ) F 1 2 ( γ , α + β + 1 γ β + 1 ; 1 R + z 2 ) = n = 0 ( γ ) n ( α + β + 1 γ ) n ( α + 1 ) n ( β + 1 ) n P n ( α , β ) ( x ) z n , R = 1 2 x z + z 2 , | z | < 1 ,
18.12.3 ( 1 + z ) α β 1 F 1 2 ( 1 2 ( α + β + 1 ) , 1 2 ( α + β + 2 ) β + 1 ; 2 ( x + 1 ) z ( 1 + z ) 2 ) = n = 0 ( α + β + 1 ) n ( β + 1 ) n P n ( α , β ) ( x ) z n , | z | < 1 ,
18.12.3_5 1 + z ( 1 2 x z + z 2 ) β + 3 2 = n = 0 ( 2 β + 2 ) n ( β + 1 ) n P n ( β + 1 , β ) ( x ) z n , | z | < 1 ,
18.12.4 ( 1 2 x z + z 2 ) λ = n = 0 C n ( λ ) ( x ) z n = n = 0 ( 2 λ ) n ( λ + 1 2 ) n P n ( λ 1 2 , λ 1 2 ) ( x ) z n , | z | < 1 .
6: 18.7 Interrelations and Limit Relations
18.7.1 C n ( λ ) ( x ) = ( 2 λ ) n ( λ + 1 2 ) n P n ( λ 1 2 , λ 1 2 ) ( x ) ,
18.7.2 P n ( α , α ) ( x ) = ( α + 1 ) n ( 2 α + 1 ) n C n ( α + 1 2 ) ( x ) .
18.7.15 C 2 n ( λ ) ( x ) = ( λ ) n ( 1 2 ) n P n ( λ 1 2 , 1 2 ) ( 2 x 2 1 ) ,
18.7.16 C 2 n + 1 ( λ ) ( x ) = ( λ ) n + 1 ( 1 2 ) n + 1 x P n ( λ 1 2 , 1 2 ) ( 2 x 2 1 ) .
7: 18.1 Notation
18.1.2 G n ( p , q , x ) = n ! ( n + p ) n P n ( p q , q 1 ) ( 2 x 1 ) ,
8: 18.14 Inequalities
18.14.1 | P n ( α , β ) ( x ) | P n ( α , β ) ( 1 ) = ( α + 1 ) n n ! , 1 x 1 , α β > 1 , α 1 2 ,
18.14.2 | P n ( α , β ) ( x ) | | P n ( α , β ) ( 1 ) | = ( β + 1 ) n n ! , 1 x 1 , β α > 1 , β 1 2 .
18.14.3_5 ( 1 2 ( 1 + x ) ) β / 2 | P n ( α , β ) ( x ) | P n ( α , β ) ( 1 ) = ( α + 1 ) n n ! , 1 x 1 , α , β 0 .
18.14.25 m = 0 n ( λ + 1 ) n m ( n m ) ! ( λ + 1 ) m m ! P m ( α , β ) ( x ) P m ( β , α ) ( 1 ) 0 , x 1 , α + β λ 0 , β 1 2 , n = 0 , 1 , .
9: 18.11 Relations to Other Functions
18.11.1 𝖯 n m ( x ) = ( 1 2 ) m ( 2 ) m ( 1 x 2 ) 1 2 m C n m ( m + 1 2 ) ( x ) = ( n + 1 ) m ( 2 ) m ( 1 x 2 ) 1 2 m P n m ( m , m ) ( x ) , 0 m n .
10: 18.5 Explicit Representations
18.5.7 P n ( α , β ) ( x ) = = 0 n ( n + α + β + 1 ) ( α + + 1 ) n ! ( n ) ! ( x 1 2 ) = ( α + 1 ) n n ! F 1 2 ( n , n + α + β + 1 α + 1 ; 1 x 2 ) ,
18.5.8 P n ( α , β ) ( x ) = 2 n = 0 n ( n + α ) ( n + β n ) ( x 1 ) n ( x + 1 ) = ( α + 1 ) n n ! ( x + 1 2 ) n F 1 2 ( n , n β α + 1 ; x 1 x + 1 ) ,