About the Project

Jacobi fraction (J-fraction)

AdvancedHelp

(0.003 seconds)

1—10 of 217 matching pages

1: 22.16 Related Functions
§22.16(i) Jacobi’s Amplitude ( am ) Function
§22.16(ii) Jacobi’s Epsilon Function
Integral Representations
§22.16(iii) Jacobi’s Zeta Function
Properties
2: 18.3 Definitions
§18.3 Definitions
The classical OP’s comprise the Jacobi, Laguerre and Hermite polynomials. … This table also includes the following special cases of Jacobi polynomials: ultraspherical, Chebyshev, and Legendre. … For finite power series of the Jacobi, ultraspherical, Laguerre, and Hermite polynomials, see §18.5(iii) (in powers of x 1 for Jacobi polynomials, in powers of x for the other cases). …
Jacobi on Other Intervals
3: 3.10 Continued Fractions
§3.10 Continued Fractions
Stieltjes Fractions
Jacobi Fractions
is called a Jacobi fraction ( J -fraction). …For the same function f ( z ) , the convergent C n of the Jacobi fraction (3.10.11) equals the convergent C 2 n of the Stieltjes fraction (3.10.6). …
4: 20.11 Generalizations and Analogs
In the case z = 0 identities for theta functions become identities in the complex variable q , with | q | < 1 , that involve rational functions, power series, and continued fractions; see Adiga et al. (1985), McKean and Moll (1999, pp. 156–158), and Andrews et al. (1988, §10.7). … This is Jacobi’s inversion problem of §20.9(ii). … Each provides an extension of Jacobi’s inversion problem. … For m = 1 , 2 , 3 , 4 , n = 1 , 2 , 3 , 4 , and m n , define twelve combined theta functions φ m , n ( z , q ) by …
5: 22.8 Addition Theorems
22.8.1 sn ( u + v ) = sn u cn v dn v + sn v cn u dn u 1 k 2 sn 2 u sn 2 v ,
22.8.14 sn ( u + v ) = sn u cn u dn v + sn v cn v dn u cn u cn v + sn u dn u sn v dn v ,
22.8.15 cn ( u + v ) = sn u cn u dn v sn v cn v dn u sn u cn v dn v sn v cn u dn u ,
22.8.17 dn ( u + v ) = sn u cn v dn u sn v cn u dn v sn u cn v dn v sn v cn u dn u ,
22.8.23 | sn z 1 cn z 1 cn z 1 dn z 1 cn z 1 dn z 1 sn z 2 cn z 2 cn z 2 dn z 2 cn z 2 dn z 2 sn z 3 cn z 3 cn z 3 dn z 3 cn z 3 dn z 3 sn z 4 cn z 4 cn z 4 dn z 4 cn z 4 dn z 4 | = 0 .
6: 22.12 Expansions in Other Trigonometric Series and Doubly-Infinite Partial Fractions: Eisenstein Series
§22.12 Expansions in Other Trigonometric Series and Doubly-Infinite Partial Fractions: Eisenstein Series
22.12.2 2 K k sn ( 2 K t , k ) = n = π sin ( π ( t ( n + 1 2 ) τ ) ) = n = ( m = ( 1 ) m t m ( n + 1 2 ) τ ) ,
22.12.8 2 K dc ( 2 K t , k ) = n = π sin ( π ( t + 1 2 n τ ) ) = n = ( m = ( 1 ) m t + 1 2 m n τ ) ,
22.12.11 2 K ns ( 2 K t , k ) = n = π sin ( π ( t n τ ) ) = n = ( m = ( 1 ) m t m n τ ) ,
22.12.13 2 K cs ( 2 K t , k ) = lim N n = N N ( 1 ) n π tan ( π ( t n τ ) ) = lim N n = N N ( 1 ) n ( lim M m = M M 1 t m n τ ) .
7: 12.6 Continued Fraction
§12.6 Continued Fraction
For a continued-fraction expansion of the ratio U ( a , x ) / U ( a 1 , x ) see Cuyt et al. (2008, pp. 340–341).
8: 22.6 Elementary Identities
22.6.2 1 + cs 2 ( z , k ) = k 2 + ds 2 ( z , k ) = ns 2 ( z , k ) ,
22.6.5 sn ( 2 z , k ) = 2 sn ( z , k ) cn ( z , k ) dn ( z , k ) 1 k 2 sn 4 ( z , k ) ,
22.6.8 cd ( 2 z , k ) = cd 2 ( z , k ) k 2 sd 2 ( z , k ) nd 2 ( z , k ) 1 + k 2 k 2 sd 4 ( z , k ) ,
§22.6(iv) Rotation of Argument (Jacobi’s Imaginary Transformation)
Table 22.6.1: Jacobi’s imaginary transformation of Jacobian elliptic functions.
sn ( i z , k ) = i sc ( z , k ) dc ( i z , k ) = dn ( z , k )
9: 22.13 Derivatives and Differential Equations
22.13.1 ( d d z sn ( z , k ) ) 2 = ( 1 sn 2 ( z , k ) ) ( 1 k 2 sn 2 ( z , k ) ) ,
22.13.2 ( d d z cn ( z , k ) ) 2 = ( 1 cn 2 ( z , k ) ) ( k 2 + k 2 cn 2 ( z , k ) ) ,
22.13.3 ( d d z dn ( z , k ) ) 2 = ( 1 dn 2 ( z , k ) ) ( dn 2 ( z , k ) k 2 ) .
22.13.7 ( d d z dc ( z , k ) ) 2 = ( dc 2 ( z , k ) 1 ) ( dc 2 ( z , k ) k 2 ) ,
22.13.10 ( d d z ns ( z , k ) ) 2 = ( ns 2 ( z , k ) k 2 ) ( ns 2 ( z , k ) 1 ) ,
10: 22.21 Tables
§22.21 Tables
Spenceley and Spenceley (1947) tabulates sn ( K x , k ) , cn ( K x , k ) , dn ( K x , k ) , am ( K x , k ) , ( K x , k ) for arcsin k = 1 ( 1 ) 89 and x = 0 ( 1 90 ) 1 to 12D, or 12 decimals of a radian in the case of am ( K x , k ) . … Lawden (1989, pp. 280–284 and 293–297) tabulates sn ( x , k ) , cn ( x , k ) , dn ( x , k ) , ( x , k ) , Z ( x | k ) to 5D for k = 0.1 ( .1 ) 0.9 , x = 0 ( .1 ) X , where X ranges from 1. … Zhang and Jin (1996, p. 678) tabulates sn ( K x , k ) , cn ( K x , k ) , dn ( K x , k ) for k = 1 4 , 1 2 and x = 0 ( .1 ) 4 to 7D. …