About the Project

Hermite polynomials

AdvancedHelp

(0.007 seconds)

11—20 of 59 matching pages

11: 18.4 Graphics
See accompanying text
Figure 18.4.7: Monic Hermite polynomials h n ( x ) = 2 n H n ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
12: 18.5 Explicit Representations
H 0 ( x ) = 1 ,
H 1 ( x ) = 2 x ,
H 2 ( x ) = 4 x 2 2 ,
𝐻𝑒 0 ( x ) = 1 ,
𝐻𝑒 1 ( x ) = x ,
13: 18.11 Relations to Other Functions
Hermite
18.11.3 H n ( x ) = 2 n U ( 1 2 n , 1 2 , x 2 ) = 2 n x U ( 1 2 n + 1 2 , 3 2 , x 2 ) = 2 1 2 n e 1 2 x 2 U ( n 1 2 , 2 1 2 x ) ,
18.11.4 𝐻𝑒 n ( x ) = 2 1 2 n U ( 1 2 n , 1 2 , 1 2 x 2 ) = 2 1 2 ( n 1 ) x U ( 1 2 n + 1 2 , 3 2 , 1 2 x 2 ) = e 1 4 x 2 U ( n 1 2 , x ) .
Hermite
18.11.7 lim n ( 1 ) n n 1 2 2 2 n n ! H 2 n ( z 2 n 1 2 ) = 1 π 1 2 cos z ,
14: 18.27 q -Hahn Class
18.27.22 = 0 ( h n ( q ; q ) h m ( q ; q ) + h n ( q ; q ) h m ( q ; q ) ) ( q + 1 , q + 1 ; q ) q = ( q ; q ) n ( q , 1 , q ; q ) q n ( n 1 ) / 2 δ n , m .
18.27.23 h ~ n ( x ; q ) = ( q ; q ) n = 0 n / 2 ( 1 ) q 2 n q ( 2 + 1 ) x n 2 ( q 2 ; q 2 ) ( q ; q ) n 2 = x n ϕ 1 2 ( q n , q n + 1 0 ; q 2 , x 2 q 2 ) .
18.27.24 = ( h ~ n ( c q ; q ) h ~ m ( c q ; q ) + h ~ n ( c q ; q ) h ~ m ( c q ; q ) ) q ( c 2 q 2 ; q 2 ) = 2 ( q 2 , c 2 q , c 2 q ; q 2 ) ( q , c 2 , c 2 q 2 ; q 2 ) ( q ; q ) n q n 2 δ n , m , c > 0 .
18.27.25 lim q 1 h n ( ( 1 q 2 ) 1 2 x ; q ) ( 1 q 2 ) n / 2 = 2 n H n ( x ) .
18.27.26 lim q 1 h ~ n ( ( 1 q 2 ) 1 2 x ; q ) ( 1 q 2 ) n / 2 = 2 n H n ( x ) .
15: 18.18 Sums
Hermite
Hermite
Hermite
Hermite
Hermite
16: 18.1 Notation
  • Hermite: H n ( x ) , 𝐻𝑒 n ( x ) .

  • Discrete q -Hermite I: h n ( x ; q ) .

  • Discrete q -Hermite II: h ~ n ( x ; q ) .

  • Continuous q -Hermite: H n ( x | q ) .

  • Continuous q 1 -Hermite: h n ( x | q )

  • 17: 18.9 Recurrence Relations and Derivatives
    Table 18.9.1: Classical OP’s: recurrence relations (18.9.1).
    p n ( x ) A n B n C n
    H n ( x ) 2 0 2 n
    𝐻𝑒 n ( x ) 1 0 n
    Table 18.9.2: Classical OP’s: recurrence relations (18.9.2_1).
    p n ( x ) a n b n c n
    H n ( x ) 1 2 0 n
    Hermite
    18.9.27 d d x 𝐻𝑒 n ( x ) = n 𝐻𝑒 n 1 ( x ) ,
    18: 18.10 Integral Representations
    Hermite
    for the Jacobi, Laguerre, and Hermite polynomials. …
    Table 18.10.1: Classical OP’s: contour integral representations (18.10.8).
    p n ( x ) g 0 ( x ) g 1 ( z , x ) g 2 ( z , x ) c Conditions
    H n ( x ) / n ! 1 z 1 e 2 x z z 2 0
    𝐻𝑒 n ( x ) / n ! 1 z 1 e x z 1 2 z 2 0
    Hermite
    19: 13.18 Relations to Other Functions
    Hermite Polynomials
    13.18.14 M 1 4 + n , 1 4 ( z 2 ) = ( 1 ) n n ! ( 2 n ) ! e 1 2 z 2 z H 2 n ( z ) ,
    13.18.15 M 3 4 + n , 1 4 ( z 2 ) = ( 1 ) n n ! ( 2 n + 1 ) ! e 1 2 z 2 z 2 H 2 n + 1 ( z ) ,
    13.18.16 W 1 4 + 1 2 n , 1 4 ( z 2 ) = 2 n e 1 2 z 2 z H n ( z ) .
    20: 18.30 Associated OP’s
    §18.30(iv) Associated Hermite Polynomials
    The recursion relation for the associated Hermite polynomials, see (18.30.2), and (18.30.3), is
    H 1 ( x ; c ) = 0 ,
    H 0 ( x ; c ) = 1 ,
    18.30.13 H n + 1 ( x ; c ) = 2 x H n ( x ; c ) 2 ( n + c ) H n 1 ( x ; c ) , n = 0 , 1 , .