About the Project

Gegenbauer%20addition%20theorem

AdvancedHelp

(0.001 seconds)

21—30 of 259 matching pages

21: 10.60 Sums
§10.60(i) Addition Theorems
22: Peter L. Walker
Walker’s books are An Introduction to Complex Analysis, published by Hilger in 1974, The Theory of Fourier Series and Integrals, published by Wiley in 1986, Elliptic Functions. A Constructive Approach, published by Wiley in 1996, and Examples and Theorems in Analysis, published by Springer in 2004. …
  • 23: 18.11 Relations to Other Functions
    18.11.1 𝖯 n m ( x ) = ( 1 2 ) m ( 2 ) m ( 1 x 2 ) 1 2 m C n m ( m + 1 2 ) ( x ) = ( n + 1 ) m ( 2 ) m ( 1 x 2 ) 1 2 m P n m ( m , m ) ( x ) , 0 m n .
    24: 8 Incomplete Gamma and Related
    Functions
    25: 28 Mathieu Functions and Hill’s Equation
    26: 18.7 Interrelations and Limit Relations
    18.7.1 C n ( λ ) ( x ) = ( 2 λ ) n ( λ + 1 2 ) n P n ( λ 1 2 , λ 1 2 ) ( x ) ,
    18.7.2 P n ( α , α ) ( x ) = ( α + 1 ) n ( 2 α + 1 ) n C n ( α + 1 2 ) ( x ) .
    18.7.9 P n ( x ) = C n ( 1 2 ) ( x ) = P n ( 0 , 0 ) ( x ) .
    18.7.15 C 2 n ( λ ) ( x ) = ( λ ) n ( 1 2 ) n P n ( λ 1 2 , 1 2 ) ( 2 x 2 1 ) ,
    18.7.16 C 2 n + 1 ( λ ) ( x ) = ( λ ) n + 1 ( 1 2 ) n + 1 x P n ( λ 1 2 , 1 2 ) ( 2 x 2 1 ) .
    27: 18.6 Symmetry, Special Values, and Limits to Monomials
    Table 18.6.1: Classical OP’s: symmetry and special values.
    p n ( x ) p n ( x ) p n ( 1 ) p 2 n ( 0 ) p 2 n + 1 ( 0 )
    C n ( λ ) ( x ) ( 1 ) n C n ( λ ) ( x ) ( 2 λ ) n / n ! ( 1 ) n ( λ ) n / n ! 2 ( 1 ) n ( λ ) n + 1 / n !
    18.6.4 lim λ C n ( λ ) ( x ) C n ( λ ) ( 1 ) = x n ,
    28: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 29: 23 Weierstrass Elliptic and Modular
    Functions
    30: 18.9 Recurrence Relations and Derivatives
    Table 18.9.1: Classical OP’s: recurrence relations (18.9.1).
    p n ( x ) A n B n C n
    C n ( λ ) ( x ) 2 ( n + λ ) n + 1 0 n + 2 λ 1 n + 1
    18.9.7 ( n + λ ) C n ( λ ) ( x ) = λ ( C n ( λ + 1 ) ( x ) C n 2 ( λ + 1 ) ( x ) ) ,
    18.9.8 4 λ ( n + λ + 1 ) ( 1 x 2 ) C n ( λ + 1 ) ( x ) = ( n + 1 ) ( n + 2 ) C n + 2 ( λ ) ( x ) + ( n + 2 λ ) ( n + 2 λ + 1 ) C n ( λ ) ( x ) .
    18.9.19 d d x C n ( λ ) ( x ) = 2 λ C n 1 ( λ + 1 ) ( x ) ,
    18.9.20 d d x ( ( 1 x 2 ) λ 1 2 C n ( λ ) ( x ) ) = ( n + 1 ) ( n + 2 λ 1 ) 2 ( λ 1 ) ( 1 x 2 ) λ 3 2 C n + 1 ( λ 1 ) ( x ) .