About the Project

Gaussian polynomials

AdvancedHelp

(0.002 seconds)

11—20 of 25 matching pages

11: 18.38 Mathematical Applications
Approximation Theory
Classical OP’s play a fundamental role in Gaussian quadrature. … The basic ideas of Gaussian quadrature, and their extensions to non-classical weight functions, and the computation of the corresponding quadrature abscissas and weights, have led to discrete variable representations, or DVRs, of Sturm–Liouville and other differential operators. …
Integrable Systems
Ultraspherical polynomials are zonal spherical harmonics. …
12: 35.10 Methods of Computation
For small values of 𝐓 the zonal polynomial expansion given by (35.8.1) can be summed numerically. … See Yan (1992) for the F 1 1 and F 1 2 functions of matrix argument in the case m = 2 , and Bingham et al. (1992) for Monte Carlo simulation on 𝐎 ( m ) applied to a generalization of the integral (35.5.8). Koev and Edelman (2006) utilizes combinatorial identities for the zonal polynomials to develop computational algorithms for approximating the series expansion (35.8.1). …
13: 3.5 Quadrature
For effective testing of Gaussian quadrature rules see Gautschi (1983). …
Gauss–Legendre Formula
The p n ( x ) are the monic Hermite polynomials H n ( x ) 18.3). … Oscillatory integral transforms are treated in Wong (1982) by a method based on Gaussian quadrature. …
14: 18.36 Miscellaneous Polynomials
EOP’s are non-classical in that not only are certain polynomial orders missing, but, also, not all EOP polynomial zeros are within the integration range of their generating measure, and EOP-orthogonality properties do not allow development of Gaussian-type quadratures. …
15: Bibliography R
  • M. Rahman (1981) A non-negative representation of the linearization coefficients of the product of Jacobi polynomials. Canad. J. Math. 33 (4), pp. 915–928.
  • M. Rahman (2001) The Associated Classical Orthogonal Polynomials. In Special Functions 2000: Current Perspective and Future Directions (Tempe, AZ), NATO Sci. Ser. II Math. Phys. Chem., Vol. 30, pp. 255–279.
  • W. P. Reinhardt (2018) Universality properties of Gaussian quadrature, the derivative rule, and a novel approach to Stieltjes inversion.
  • W. P. Reinhardt (2021b) Relationships between the zeros, weights, and weight functions of orthogonal polynomials: Derivative rule approach to Stieltjes and spectral imaging. Computing in Science and Engineering 23 (3), pp. 56–64.
  • D. St. P. Richards (Ed.) (1992) Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications. Contemporary Mathematics, Vol. 138, American Mathematical Society, Providence, RI.
  • 16: Bibliography F
  • J. L. Fields and Y. L. Luke (1963a) Asymptotic expansions of a class of hypergeometric polynomials with respect to the order. II. J. Math. Anal. Appl. 7 (3), pp. 440–451.
  • J. L. Fields and Y. L. Luke (1963b) Asymptotic expansions of a class of hypergeometric polynomials with respect to the order. J. Math. Anal. Appl. 6 (3), pp. 394–403.
  • J. L. Fields (1965) Asymptotic expansions of a class of hypergeometric polynomials with respect to the order. III. J. Math. Anal. Appl. 12 (3), pp. 593–601.
  • B. D. Fried and S. D. Conte (1961) The Plasma Dispersion Function: The Hilbert Transform of the Gaussian. Academic Press, London-New York.
  • Y. V. Fyodorov (2005) Introduction to the Random Matrix Theory: Gaussian Unitary Ensemble and Beyond. In Recent Perspectives in Random Matrix Theory and Number Theory, London Math. Soc. Lecture Note Ser., Vol. 322, pp. 31–78.
  • 17: Bibliography G
  • G. Gasper (1972) An inequality of Turán type for Jacobi polynomials. Proc. Amer. Math. Soc. 32, pp. 435–439.
  • W. Gautschi (1983) How and how not to check Gaussian quadrature formulae. BIT 23 (2), pp. 209–216.
  • W. Gautschi (1984) Questions of Numerical Condition Related to Polynomials. In Studies in Numerical Analysis, G. H. Golub (Ed.), pp. 140–177.
  • W. Gautschi (2002a) Computation of Bessel and Airy functions and of related Gaussian quadrature formulae. BIT 42 (1), pp. 110–118.
  • V. X. Genest, L. Vinet, and A. Zhedanov (2016) The non-symmetric Wilson polynomials are the Bannai-Ito polynomials. Proc. Amer. Math. Soc. 144 (12), pp. 5217–5226.
  • 18: 35.7 Gaussian Hypergeometric Function of Matrix Argument
    19: Bibliography H
  • B. A. Hargrave and B. D. Sleeman (1977) Lamé polynomials of large order. SIAM J. Math. Anal. 8 (5), pp. 800–842.
  • E. Hendriksen and H. van Rossum (1986) Orthogonal Laurent polynomials. Nederl. Akad. Wetensch. Indag. Math. 48 (1), pp. 17–36.
  • F. T. Howard (1976) Roots of the Euler polynomials. Pacific J. Math. 64 (1), pp. 181–191.
  • Y. P. Hsu (1993) Development of a Gaussian hypergeometric function code in complex domains. Internat. J. Modern Phys. C 4 (4), pp. 805–840.
  • I. Huang and S. Huang (1999) Bernoulli numbers and polynomials via residues. J. Number Theory 76 (2), pp. 178–193.
  • 20: 18.39 Applications in the Physical Sciences
    The associated Coulomb–Laguerre polynomials are defined as … For many applications the natural weight functions are non-classical, and thus the OP’s and the determination of the Gaussian quadrature points and weights represent a computational challenge. …
    §18.39(iv) Coulomb–Pollaczek Polynomials and J-Matrix Methods
    The Coulomb–Pollaczek Polynomials
    Full expressions for both A x i , l and B l ( x ) are given in Yamani and Reinhardt (1975) and it is seen that | A x i , l / B l ( x i ) | 2 = w i N / w CP ( x i ) where w i N is the Gaussian-Pollaczek quadrature weight at x = x i , and w CP ( x i ) is the Gaussian-Pollaczek weight function at the same quadrature abscissa. …