About the Project

Gauss%E2%80%93Legendre formula

AdvancedHelp

(0.002 seconds)

21—30 of 410 matching pages

21: 35.7 Gaussian Hypergeometric Function of Matrix Argument
โ–บ
Gauss Formula
โ–บ
Reflection Formula
โ–บSubject to the conditions (a)–(c), the function f โก ( ๐“ ) = F 1 2 โก ( a , b ; c ; ๐“ ) is the unique solution of each partial differential equation … โ–บSystems of partial differential equations for the F 1 0 (defined in §35.8) and F 1 1 functions of matrix argument can be obtained by applying (35.8.9) and (35.8.10) to (35.7.9). … โ–บ
22: 19.5 Maclaurin and Related Expansions
§19.5 Maclaurin and Related Expansions
โ–บ
19.5.1 K โก ( k ) = ฯ€ 2 โข m = 0 ( 1 2 ) m โข ( 1 2 ) m m ! โข m ! โข k 2 โข m = ฯ€ 2 โข F 1 2 โก ( 1 2 , 1 2 1 ; k 2 ) ,
โ–บwhere F 1 2 is the Gauss hypergeometric function (§§15.1 and 15.2(i)). … … โ–บ
23: 16.16 Transformations of Variables
โ–บ
§16.16(i) Reduction Formulas
โ–บ
16.16.1 F 1 โก ( ฮฑ ; ฮฒ , ฮฒ ; ฮฒ + ฮฒ ; x , y ) = ( 1 y ) ฮฑ โข F 1 2 โก ( ฮฑ , ฮฒ ฮฒ + ฮฒ ; x y 1 y ) ,
โ–บ
16.16.2 F 2 โก ( ฮฑ ; ฮฒ , ฮฒ ; ฮณ , ฮฒ ; x , y ) = ( 1 y ) ฮฑ โข F 1 2 โก ( ฮฑ , ฮฒ ฮณ ; x 1 y ) ,
โ–บ
16.16.5 F 3 โก ( ฮฑ , ฮณ ฮฑ ; ฮฒ , ฮณ ฮฒ ; ฮณ ; x , y ) = ( 1 y ) ฮฑ + ฮฒ ฮณ โข F 1 2 โก ( ฮฑ , ฮฒ ฮณ ; x + y x โข y ) ,
โ–บSee Erdélyi et al. (1953a, §5.10) for these and further reduction formulas. …
24: 19.2 Definitions
โ–บ
§19.2(ii) Legendre’s Integrals
โ–บLegendre’s complementary complete elliptic integrals are defined via … โ–บBulirsch’s integrals are linear combinations of Legendre’s integrals that are chosen to facilitate computational application of Bartky’s transformation (Bartky (1938)). … โ–บLastly, corresponding to Legendre’s incomplete integral of the third kind we have … โ–บFormulas involving ฮ  โก ( ฯ• , ฮฑ 2 , k ) that are customarily different for circular cases, ordinary hyperbolic cases, and (hyperbolic) Cauchy principal values, are united in a single formula by using R C โก ( x , y ) . …
25: 18.26 Wilson Class: Continued
โ–บ โ–บSee Koekoek et al. (2010, Chapter 9) for further formulas. … โ–บFor the hypergeometric function F 1 2 see §§15.1 and 15.2(i). … โ–บ
18.26.18 F 1 2 โก ( a + i โข y , d + i โข y a + d ; z ) โข F 1 2 โก ( b i โข y , c i โข y b + c ; z ) = n = 0 W n โก ( y 2 ; a , b , c , d ) ( a + d ) n โข ( b + c ) n โข n ! โข z n , | z | < 1 .
โ–บ
18.26.19 ( 1 z ) c + i โข y โข F 1 2 โก ( a + i โข y , b + i โข y a + b ; z ) = n = 0 S n โก ( y 2 ; a , b , c ) ( a + b ) n โข n ! โข z n , | z | < 1 .
26: 15.10 Hypergeometric Differential Equation
โ–บ
f 1 โก ( z ) = F โก ( a , b c ; z ) ,
โ–บ
f 1 โก ( z ) = F โก ( a , b a + b + 1 c ; 1 z ) ,
โ–บ(b) If c equals n = 1 , 2 , 3 , , and a 1 , 2 , , n 1 , then fundamental solutions in the neighborhood of z = 0 are given by F โก ( a , b ; n ; z ) and … โ–บ
§15.10(ii) Kummer’s 24 Solutions and Connection Formulas
โ–บThe ( 6 3 ) = 20 connection formulas for the principal branches of Kummer’s solutions are: …
27: 27.2 Functions
โ–บGauss and Legendre conjectured that ฯ€ โก ( x ) is asymptotic to x / ln โก x as x : …(See Gauss (1863, Band II, pp. 437–477) and Legendre (1808, p. 394).) … โ–บ
Table 27.2.1: Primes.
โ–บ โ–บโ–บ
n p n p n + 10 p n + 20 p n + 30 p n + 40 p n + 50 p n + 60 p n + 70 p n + 80 p n + 90
โ–บ
โ–บ
Table 27.2.2: Functions related to division.
โ–บ โ–บโ–บโ–บ
n ฯ• โก ( n ) d โก ( n ) ฯƒ โก ( n ) n ฯ• โก ( n ) d โก ( n ) ฯƒ โก ( n ) n ฯ• โก ( n ) d โก ( n ) ฯƒ โก ( n ) n ฯ• โก ( n ) d โก ( n ) ฯƒ โก ( n )
11 10 2 12 24 8 8 60 37 36 2 38 50 20 6 93
โ–บ
28: 19.15 Advantages of Symmetry
โ–บSymmetry in x , y , z of R F โก ( x , y , z ) , R G โก ( x , y , z ) , and R J โก ( x , y , z , p ) replaces the five transformations (19.7.2), (19.7.4)–(19.7.7) of Legendre’s integrals; compare (19.25.17). Symmetry unifies the Landen transformations of §19.8(ii) with the Gauss transformations of §19.8(iii), as indicated following (19.22.22) and (19.36.9). (19.21.12) unifies the three transformations in §19.7(iii) that change the parameter of Legendre’s third integral. … โ–บThese reduction theorems, unknown in the Legendre theory, allow symbolic integration without imposing conditions on the parameters and the limits of integration (see §19.29(ii)). …
29: 15.3 Graphics
โ–บ
โ–บSee accompanying textโ–บ
Figure 15.3.1: F โก ( 4 3 , 9 16 ; 14 5 ; x ) , 100 x 1 . Magnify
โ–บ
โ–บSee accompanying textโ–บ
Figure 15.3.2: F โก ( 5 , 10 ; 1 ; x ) , 0.023 x 1 . Magnify
โ–บ
โ–บSee accompanying textโ–บ
Figure 15.3.3: F โก ( 1 , 10 ; 10 ; x ) , 3 x 1 . Magnify
โ–บ
โ–บSee accompanying textโ–บ
Figure 15.3.4: F โก ( 5 , 10 ; 1 ; x ) , 1 x 0.022 . Magnify
โ–บ
โ–บ
See accompanying text
โ–บ
Figure 15.3.5: F โก ( 4 3 , 9 16 ; 14 5 ; x + i โข y ) , 0 x 2 , 0.5 y 0.5 . … Magnify 3D Help
30: 35.9 Applications
โ–บIn multivariate statistical analysis based on the multivariate normal distribution, the probability density functions of many random matrices are expressible in terms of generalized hypergeometric functions of matrix argument F q p , with p 2 and q 1 . … โ–บFor other statistical applications of F q p functions of matrix argument see Perlman and Olkin (1980), Groeneboom and Truax (2000), Bhaumik and Sarkar (2002), Richards (2004) (monotonicity of power functions of multivariate statistical test criteria), Bingham et al. (1992) (Procrustes analysis), and Phillips (1986) (exact distributions of statistical test criteria). These references all use results related to the integral formulas (35.4.7) and (35.5.8). …