About the Project

Gauss%E2%80%93Legendre%20formula

AdvancedHelp

(0.003 seconds)

11—20 of 462 matching pages

11: 16.4 Argument Unity
โ–บThe function F q q + 1 โก ( ๐š ; ๐› ; z ) is well-poised if … โ–บThe function F q q + 1 with argument unity and general values of the parameters is discussed in Bühring (1992). … โ–บFor generalizations involving F r + 2 r + 3 functions see Kim et al. (2013). … โ–บBalanced F 3 4 โก ( 1 ) series have transformation formulas and three-term relations. … โ–บTransformations for both balanced F 3 4 โก ( 1 ) and very well-poised F 6 7 โก ( 1 ) are included in Bailey (1964, pp. 56–63). …
12: 15.9 Relations to Other Functions
โ–บ
Legendre
โ–บ โ–บ
§15.9(iv) Associated Legendre Functions; Ferrers Functions
โ–บAny hypergeometric function for which a quadratic transformation exists can be expressed in terms of associated Legendre functions or Ferrers functions. … โ–บThe following formulas apply with principal branches of the hypergeometric functions, associated Legendre functions, and fractional powers. …
13: 35.8 Generalized Hypergeometric Functions of Matrix Argument
โ–บ
§35.8(iii) F 2 3 Case
โ–บ
Kummer Transformation
โ–บ
Pfaff–Saalschütz Formula
โ–บ
Thomae Transformation
โ–บMultidimensional Mellin–Barnes integrals are established in Ding et al. (1996) for the functions F q p and F p p + 1 of matrix argument. …
14: 3.5 Quadrature
โ–บ
§3.5(v) Gauss Quadrature
โ–บ
GaussLegendre Formula
โ–บ
Gauss–Chebyshev Formula
โ–บ
Gauss–Jacobi Formula
โ–บ
Gauss–Laguerre Formula
15: 27.2 Functions
โ–บEuclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. … โ–บGauss and Legendre conjectured that ฯ€ โก ( x ) is asymptotic to x / ln โก x as x : …(See Gauss (1863, Band II, pp. 437–477) and Legendre (1808, p. 394).) … โ–บ
Table 27.2.1: Primes.
โ–บ โ–บโ–บ
n p n p n + 10 p n + 20 p n + 30 p n + 40 p n + 50 p n + 60 p n + 70 p n + 80 p n + 90
โ–บ
โ–บ
Table 27.2.2: Functions related to division.
โ–บ โ–บโ–บโ–บ
n ฯ• โก ( n ) d โก ( n ) ฯƒ โก ( n ) n ฯ• โก ( n ) d โก ( n ) ฯƒ โก ( n ) n ฯ• โก ( n ) d โก ( n ) ฯƒ โก ( n ) n ฯ• โก ( n ) d โก ( n ) ฯƒ โก ( n )
11 10 2 12 24 8 8 60 37 36 2 38 50 20 6 93
โ–บ
16: 16.18 Special Cases
โ–บThe F 1 1 and F 1 2 functions introduced in Chapters 13 and 15, as well as the more general F q p functions introduced in the present chapter, are all special cases of the Meijer G -function. … โ–บ
16.18.1 F q p โก ( a 1 , , a p b 1 , , b q ; z ) = ( k = 1 q ฮ“ โก ( b k ) / k = 1 p ฮ“ โก ( a k ) ) โข G p , q + 1 1 , p โก ( z ; 1 a 1 , , 1 a p 0 , 1 b 1 , , 1 b q ) = ( k = 1 q ฮ“ โก ( b k ) / k = 1 p ฮ“ โก ( a k ) ) โข G q + 1 , p p , 1 โก ( 1 z ; 1 , b 1 , , b q a 1 , , a p ) .
โ–บAs a corollary, special cases of the F 1 1 and F 1 2 functions, including Airy functions, Bessel functions, parabolic cylinder functions, Ferrers functions, associated Legendre functions, and many orthogonal polynomials, are all special cases of the Meijer G -function. …
17: 31.7 Relations to Other Functions
โ–บ
§31.7(i) Reductions to the Gauss Hypergeometric Function
โ–บOther reductions of H โข โ„“ to a F 1 2 , with at least one free parameter, exist iff the pair ( a , p ) takes one of a finite number of values, where q = ฮฑ โข ฮฒ โข p . … โ–บ
31.7.2 H โข โ„“ โก ( 2 , ฮฑ โข ฮฒ ; ฮฑ , ฮฒ , ฮณ , ฮฑ + ฮฒ 2 โข ฮณ + 1 ; z ) = F 1 2 โก ( 1 2 โข ฮฑ , 1 2 โข ฮฒ ; ฮณ ; 1 ( 1 z ) 2 ) ,
โ–บ
31.7.3 H โข โ„“ โก ( 4 , ฮฑ โข ฮฒ ; ฮฑ , ฮฒ , 1 2 , 2 3 โข ( ฮฑ + ฮฒ ) ; z ) = F 1 2 โก ( 1 3 โข ฮฑ , 1 3 โข ฮฒ ; 1 2 ; 1 ( 1 z ) 2 โข ( 1 1 4 โข z ) ) ,
โ–บSimilar specializations of formulas in §31.3(ii) yield solutions in the neighborhoods of the singularities ฮถ = K โก , K โก + i โข K โก , and i โข K โก , where K โก and K โก are related to k as in §19.2(ii).
18: 20.11 Generalizations and Analogs
โ–บ
§20.11(i) Gauss Sum
โ–บFor relatively prime integers m , n with n > 0 and m โข n even, the Gauss sum G โก ( m , n ) is defined by … … โ–บโ–บSimilar identities can be constructed for F 1 2 โก ( 1 3 , 2 3 ; 1 ; k 2 ) , F 1 2 โก ( 1 4 , 3 4 ; 1 ; k 2 ) , and F 1 2 โก ( 1 6 , 5 6 ; 1 ; k 2 ) . …
19: 16.8 Differential Equations
โ–บthe function w = F q p โก ( ๐š ; ๐› ; z ) satisfies the differential equation … โ–บ
w 0 โก ( z ) = F q p โก ( a 1 , , a p b 1 , , b q ; z ) ,
โ–บWe have the connection formulaโ–บAnalytical continuation formulas for F q q + 1 โก ( ๐š ; ๐› ; z ) near z = 1 are given in Bühring (1987b) for the case q = 2 , and in Bühring (1992) for the general case. … โ–บ
20: 18.20 Hahn Class: Explicit Representations
โ–บ
§18.20(i) Rodrigues Formulas
โ–บ โ–บ
18.20.6 K n โก ( x ; p , N ) = F 1 2 โก ( n , x N ; p 1 ) , n = 0 , 1 , , N .
โ–บ
18.20.7 M n โก ( x ; ฮฒ , c ) = F 1 2 โก ( n , x ฮฒ ; 1 c 1 ) .
โ–บ