About the Project

Gauss%E2%80%93Laguerre%20formula

AdvancedHelp

(0.002 seconds)

21—30 of 391 matching pages

21: 16.16 Transformations of Variables
§16.16(i) Reduction Formulas
16.16.1 F 1 ( α ; β , β ; β + β ; x , y ) = ( 1 y ) α F 1 2 ( α , β β + β ; x y 1 y ) ,
16.16.2 F 2 ( α ; β , β ; γ , β ; x , y ) = ( 1 y ) α F 1 2 ( α , β γ ; x 1 y ) ,
16.16.5 F 3 ( α , γ α ; β , γ β ; γ ; x , y ) = ( 1 y ) α + β γ F 1 2 ( α , β γ ; x + y x y ) ,
See Erdélyi et al. (1953a, §5.10) for these and further reduction formulas. …
22: 27.2 Functions
Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. … Gauss and Legendre conjectured that π ( x ) is asymptotic to x / ln x as x : …(See Gauss (1863, Band II, pp. 437–477) and Legendre (1808, p. 394).) …
Table 27.2.1: Primes.
n p n p n + 10 p n + 20 p n + 30 p n + 40 p n + 50 p n + 60 p n + 70 p n + 80 p n + 90
Table 27.2.2: Functions related to division.
n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n )
11 10 2 12 24 8 8 60 37 36 2 38 50 20 6 93
23: 18.26 Wilson Class: Continued
See Koekoek et al. (2010, Chapter 9) for further formulas. … For the hypergeometric function F 1 2 see §§15.1 and 15.2(i). …
18.26.18 F 1 2 ( a + i y , d + i y a + d ; z ) F 1 2 ( b i y , c i y b + c ; z ) = n = 0 W n ( y 2 ; a , b , c , d ) ( a + d ) n ( b + c ) n n ! z n , | z | < 1 .
18.26.19 ( 1 z ) c + i y F 1 2 ( a + i y , b + i y a + b ; z ) = n = 0 S n ( y 2 ; a , b , c ) ( a + b ) n n ! z n , | z | < 1 .
24: 15.10 Hypergeometric Differential Equation
f 1 ( z ) = F ( a , b c ; z ) ,
f 1 ( z ) = F ( a , b a + b + 1 c ; 1 z ) ,
(b) If c equals n = 1 , 2 , 3 , , and a 1 , 2 , , n 1 , then fundamental solutions in the neighborhood of z = 0 are given by F ( a , b ; n ; z ) and …
§15.10(ii) Kummer’s 24 Solutions and Connection Formulas
The ( 6 3 ) = 20 connection formulas for the principal branches of Kummer’s solutions are: …
25: 15.3 Graphics
See accompanying text
Figure 15.3.1: F ( 4 3 , 9 16 ; 14 5 ; x ) , 100 x 1 . Magnify
See accompanying text
Figure 15.3.2: F ( 5 , 10 ; 1 ; x ) , 0.023 x 1 . Magnify
See accompanying text
Figure 15.3.3: F ( 1 , 10 ; 10 ; x ) , 3 x 1 . Magnify
See accompanying text
Figure 15.3.4: F ( 5 , 10 ; 1 ; x ) , 1 x 0.022 . Magnify
See accompanying text
Figure 15.3.5: F ( 4 3 , 9 16 ; 14 5 ; x + i y ) , 0 x 2 , 0.5 y 0.5 . … Magnify 3D Help
26: 35.9 Applications
In multivariate statistical analysis based on the multivariate normal distribution, the probability density functions of many random matrices are expressible in terms of generalized hypergeometric functions of matrix argument F q p , with p 2 and q 1 . … For other statistical applications of F q p functions of matrix argument see Perlman and Olkin (1980), Groeneboom and Truax (2000), Bhaumik and Sarkar (2002), Richards (2004) (monotonicity of power functions of multivariate statistical test criteria), Bingham et al. (1992) (Procrustes analysis), and Phillips (1986) (exact distributions of statistical test criteria). These references all use results related to the integral formulas (35.4.7) and (35.5.8). …
27: 8.17 Incomplete Beta Functions
8.17.8 B x ( a , b ) = x a ( 1 x ) b a F ( a + b , 1 ; a + 1 ; x ) ,
8.17.9 B x ( a , b ) = x a ( 1 x ) b 1 a F ( 1 , 1 b a + 1 ; x x 1 ) .
For the hypergeometric function F ( a , b ; c ; z ) see §15.2(i). …
8.17.24 I x ( m , n ) = ( 1 x ) n j = m ( n + j 1 j ) x j , m , n positive integers; 0 x < 1 .
28: 15.1 Special Notation
29: 15.16 Products
15.16.3 F ( a , b c ; z ) F ( a , b c ; ζ ) = s = 0 ( a ) s ( b ) s ( c a ) s ( c b ) s ( c ) s ( c ) 2 s s ! ( z ζ ) s F ( a + s , b + s c + 2 s ; z + ζ z ζ ) , | z | < 1 , | ζ | < 1 , | z + ζ z ζ | < 1 .
15.16.4 F ( a , b c ; z ) F ( a , b c ; z ) + a b ( a c ) ( b c ) c 2 ( 1 c 2 ) z 2 F ( 1 + a , 1 + b 2 + c ; z ) F ( 1 a , 1 b 2 c ; z ) = 1 .
15.16.5 F ( 1 2 + λ , 1 2 ν 1 + λ + μ ; z ) F ( 1 2 λ , 1 2 + ν 1 + ν + μ ; 1 z ) + F ( 1 2 + λ , 1 2 ν 1 + λ + μ ; z ) F ( 1 2 λ , 1 2 + ν 1 + ν + μ ; 1 z ) F ( 1 2 + λ , 1 2 ν 1 + λ + μ ; z ) F ( 1 2 λ , 1 2 + ν 1 + ν + μ ; 1 z ) = Γ ( 1 + λ + μ ) Γ ( 1 + ν + μ ) Γ ( λ + μ + ν + 3 2 ) Γ ( 1 2 + ν ) , | ph z | < π , | ph ( 1 z ) | < π .
30: 16.6 Transformations of Variable
16.6.1 F 2 3 ( a , b , c a b + 1 , a c + 1 ; z ) = ( 1 z ) a F 2 3 ( a b c + 1 , 1 2 a , 1 2 ( a + 1 ) a b + 1 , a c + 1 ; 4 z ( 1 z ) 2 ) .
16.6.2 F 2 3 ( a , 2 b a 1 , 2 2 b + a b , a b + 3 2 ; z 4 ) = ( 1 z ) a F 2 3 ( 1 3 a , 1 3 a + 1 3 , 1 3 a + 2 3 b , a b + 3 2 ; 27 z 4 ( 1 z ) 3 ) .
For Kummer-type transformations of F 2 2 functions see Miller (2003) and Paris (2005a), and for further transformations see Erdélyi et al. (1953a, §4.5), Miller and Paris (2011), Choi and Rathie (2013) and Wang and Rathie (2013).