About the Project

Gauss%E2%80%93Chebyshev%20formula

AdvancedHelp

(0.003 seconds)

11—20 of 391 matching pages

11: 35.8 Generalized Hypergeometric Functions of Matrix Argument
§35.8(iii) F 2 3 Case
Kummer Transformation
Pfaff–Saalschütz Formula
Thomae Transformation
Multidimensional Mellin–Barnes integrals are established in Ding et al. (1996) for the functions F q p and F p p + 1 of matrix argument. …
12: 15.9 Relations to Other Functions
Chebyshev
The following formulas apply with principal branches of the hypergeometric functions, associated Legendre functions, and fractional powers. …
13: 13.31 Approximations
§13.31(i) Chebyshev-Series Expansions
Luke (1969b, pp. 35 and 25) provides Chebyshev-series expansions of M ( a , b , x ) and U ( a , b , x ) that include the intervals 0 x α and α x < , respectively, where α is an arbitrary positive constant. …
13.31.1 A n ( z ) = s = 0 n ( n ) s ( n + 1 ) s ( a ) s ( b ) s ( a + 1 ) s ( b + 1 ) s ( n ! ) 2 F 3 3 ( n + s , n + 1 + s , 1 1 + s , a + 1 + s , b + 1 + s ; z ) ,
14: 31.7 Relations to Other Functions
§31.7(i) Reductions to the Gauss Hypergeometric Function
Other reductions of H to a F 1 2 , with at least one free parameter, exist iff the pair ( a , p ) takes one of a finite number of values, where q = α β p . …
31.7.2 H ( 2 , α β ; α , β , γ , α + β 2 γ + 1 ; z ) = F 1 2 ( 1 2 α , 1 2 β ; γ ; 1 ( 1 z ) 2 ) ,
31.7.3 H ( 4 , α β ; α , β , 1 2 , 2 3 ( α + β ) ; z ) = F 1 2 ( 1 3 α , 1 3 β ; 1 2 ; 1 ( 1 z ) 2 ( 1 1 4 z ) ) ,
Similar specializations of formulas in §31.3(ii) yield solutions in the neighborhoods of the singularities ζ = K , K + i K , and i K , where K and K are related to k as in §19.2(ii).
15: 20.11 Generalizations and Analogs
§20.11(i) Gauss Sum
For relatively prime integers m , n with n > 0 and m n even, the Gauss sum G ( m , n ) is defined by … … Similar identities can be constructed for F 1 2 ( 1 3 , 2 3 ; 1 ; k 2 ) , F 1 2 ( 1 4 , 3 4 ; 1 ; k 2 ) , and F 1 2 ( 1 6 , 5 6 ; 1 ; k 2 ) . …
16: 16.8 Differential Equations
the function w = F q p ( 𝐚 ; 𝐛 ; z ) satisfies the differential equation …
w 0 ( z ) = F q p ( a 1 , , a p b 1 , , b q ; z ) ,
We have the connection formulaAnalytical continuation formulas for F q q + 1 ( 𝐚 ; 𝐛 ; z ) near z = 1 are given in Bühring (1987b) for the case q = 2 , and in Bühring (1992) for the general case. …
17: 18.20 Hahn Class: Explicit Representations
§18.20(i) Rodrigues Formulas
18.20.6 K n ( x ; p , N ) = F 1 2 ( n , x N ; p 1 ) , n = 0 , 1 , , N .
18.20.7 M n ( x ; β , c ) = F 1 2 ( n , x β ; 1 c 1 ) .
18: 35.7 Gaussian Hypergeometric Function of Matrix Argument
Gauss Formula
Reflection Formula
Subject to the conditions (a)–(c), the function f ( 𝐓 ) = F 1 2 ( a , b ; c ; 𝐓 ) is the unique solution of each partial differential equation … Systems of partial differential equations for the F 1 0 (defined in §35.8) and F 1 1 functions of matrix argument can be obtained by applying (35.8.9) and (35.8.10) to (35.7.9). …
19: 16.16 Transformations of Variables
§16.16(i) Reduction Formulas
16.16.1 F 1 ( α ; β , β ; β + β ; x , y ) = ( 1 y ) α F 1 2 ( α , β β + β ; x y 1 y ) ,
16.16.2 F 2 ( α ; β , β ; γ , β ; x , y ) = ( 1 y ) α F 1 2 ( α , β γ ; x 1 y ) ,
16.16.5 F 3 ( α , γ α ; β , γ β ; γ ; x , y ) = ( 1 y ) α + β γ F 1 2 ( α , β γ ; x + y x y ) ,
See Erdélyi et al. (1953a, §5.10) for these and further reduction formulas. …
20: 27.2 Functions
Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. … Gauss and Legendre conjectured that π ( x ) is asymptotic to x / ln x as x : …(See Gauss (1863, Band II, pp. 437–477) and Legendre (1808, p. 394).) …
Table 27.2.1: Primes.
n p n p n + 10 p n + 20 p n + 30 p n + 40 p n + 50 p n + 60 p n + 70 p n + 80 p n + 90
Table 27.2.2: Functions related to division.
n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n )
11 10 2 12 24 8 8 60 37 36 2 38 50 20 6 93