About the Project

Euler beta integral

AdvancedHelp

(0.005 seconds)

31—40 of 81 matching pages

31: 19.34 Mutual Inductance of Coaxial Circles
§19.34 Mutual Inductance of Coaxial Circles
Application of (19.29.4) and (19.29.7) with α = 1 , a β + b β t = 1 t , δ = 3 , and a γ + b γ t = 1 yields
19.34.5 3 c 2 8 π a b M = 3 R F ( 0 , r + 2 , r 2 ) 2 r 2 R D ( 0 , r + 2 , r 2 ) ,
19.34.6 c 2 2 π M = ( r + 2 + r 2 ) R F ( 0 , r + 2 , r 2 ) 4 R G ( 0 , r + 2 , r 2 ) .
References for other inductance problems solvable in terms of elliptic integrals are given in Grover (1946, pp. 8 and 283).
32: 19.26 Addition Theorems
§19.26 Addition Theorems
where …where 0 < γ 2 θ < γ 2 for γ = α , β , σ , except that σ 2 θ can be 0, and …
§19.26(iii) Duplication Formulas
where …
33: 18.37 Classical OP’s in Two or More Variables
18.37.8 0 < y < x < 1 P m , n α , β , γ ( x , y ) P j , α , β , γ ( x , y ) ( 1 x ) α ( x y ) β y γ d x d y = 0 , m j and/or n .
34: 31.9 Orthogonality
31.9.2 ζ ( 1 + , 0 + , 1 , 0 ) t γ 1 ( 1 t ) δ 1 ( t a ) ϵ 1 w m ( t ) w k ( t ) d t = δ m , k θ m .
f 0 ( q m , z ) = H ( a , q m ; α , β , γ , δ ; z ) ,
f 1 ( q m , z ) = H ( 1 a , α β q m ; α , β , δ , γ ; 1 z ) ,
31.9.6 ρ ( s , t ) = ( s t ) ( s t ) γ 1 ( ( s 1 ) ( t 1 ) ) δ 1 ( ( s a ) ( t a ) ) ϵ 1 ,
35: 32.10 Special Function Solutions
The solution (32.10.34) is an essentially transcendental function of both constants of integration since P VI  with α = β = γ = 0 and δ = 1 2 does not admit an algebraic first integral of the form P ( z , w , w , C ) = 0 , with C a constant. …
36: 5.21 Methods of Computation
An effective way of computing Γ ( z ) in the right half-plane is backward recurrence, beginning with a value generated from the asymptotic expansion (5.11.3). … Similarly for ln Γ ( z ) , ψ ( z ) , and the polygamma functions. Another approach is to apply numerical quadrature (§3.5) to the integral (5.9.2), using paths of steepest descent for the contour. … For the computation of the q -gamma and q -beta functions see Gabutti and Allasia (2008).
37: 36.6 Scaling Relations
§36.6 Scaling Relations
Ψ K ( 𝐱 ; k ) = k β K Ψ K ( 𝐲 ( k ) ) ,
Ψ ( U ) ( 𝐱 ; k ) = k β ( U ) Ψ ( U ) ( 𝐲 ( U ) ( k ) ) ,
Indices for k -Scaling of Magnitude of Ψ K or Ψ ( U ) (Singularity Index)
umbilics:  β ( U ) = 1 3 .
38: 15.9 Relations to Other Functions
15.9.13 f ( t ) = 1 2 π i i i f ~ ( i λ ) Φ i λ ( α , β ) ( t ) Γ ( 1 2 ( α + β + 1 + λ ) ) Γ ( 1 2 ( α β + 1 + λ ) ) Γ ( α + 1 ) Γ ( λ ) 2 α + β + 1 λ d λ ,
39: 2.6 Distributional Methods
2.6.4 0 t α 1 ( x + t ) α + β d t = Γ ( α ) Γ ( β ) Γ ( α + β ) 1 x β , α > 0 , β > 0 .
40: Guide to Searching the DLMF
Table 1: Query Examples
Query Matching records contain
int sin the integral of the sin function
int_$^$ sin any definite integral of sin
Euler the word ”Euler” or any of the various Euler terms such as Euler Gamma function Γ , Euler Beta function B , etc.
Gamma near/5 = the terms Γ and = such that Γ is up to 5 terms before or after =.
Table 2: Wildcard Examples
Query What it stands for
int_$^$ sin any definite integral of sin.