About the Project

Einstein summation convention

AdvancedHelp

(0.001 seconds)

11—20 of 82 matching pages

11: 34.3 Basic Properties: 3 j Symbol
In the summations (34.3.16)–(34.3.18) the summation variables range over all values that satisfy the conditions given in (34.2.1)–(34.2.3). Similar conventions apply to all subsequent summations in this chapter.
12: William P. Reinhardt
He has recently carried out research on non-linear dynamics of Bose–Einstein condensates that served to motivate his interest in elliptic functions. …
13: Bibliography G
  • F. Gao and V. J. W. Guo (2013) Contiguous relations and summation and transformation formulae for basic hypergeometric series. J. Difference Equ. Appl. 19 (12), pp. 2029–2042.
  • W. Gautschi (1993) On the computation of generalized Fermi-Dirac and Bose-Einstein integrals. Comput. Phys. Comm. 74 (2), pp. 233–238.
  • R. A. Gustafson (1987) Multilateral summation theorems for ordinary and basic hypergeometric series in U ( n ) . SIAM J. Math. Anal. 18 (6), pp. 1576–1596.
  • 14: Bibliography B
  • Á. Baricz and T. K. Pogány (2013) Integral representations and summations of the modified Struve function. Acta Math. Hungar. 141 (3), pp. 254–281.
  • B. C. Berndt (1975a) Character analogues of the Poisson and Euler-MacLaurin summation formulas with applications. J. Number Theory 7 (4), pp. 413–445.
  • B. C. Berndt (1975b) Periodic Bernoulli numbers, summation formulas and applications. In Theory and Application of Special Functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975), pp. 143–189.
  • J. C. Bronski, L. D. Carr, B. Deconinck, J. N. Kutz, and K. Promislow (2001) Stability of repulsive Bose-Einstein condensates in a periodic potential. Phys. Rev. E (3) 63 (036612), pp. 1–11.
  • J. G. Byatt-Smith (2000) The Borel transform and its use in the summation of asymptotic expansions. Stud. Appl. Math. 105 (2), pp. 83–113.
  • 15: 18.20 Hahn Class: Explicit Representations
    Here we use as convention for (16.2.1) with b q = N , a 1 = n , and n = 0 , 1 , , N that the summation on the right-hand side ends at k = n . …
    16: 18.26 Wilson Class: Continued
    Here we use as convention for (16.2.1) with b q = N , a 1 = n , and n = 0 , 1 , , N that the summation on the right-hand side ends at k = n . …
    17: 4.12 Generalized Logarithms and Exponentials
    4.12.9 ψ ( x ) = + ln ln  times x , x > 1 ,
    4.12.10 0 ln ln times x < 1 .
    18: 5.19 Mathematical Applications
    §5.19(i) Summation of Rational Functions
    19: 17.18 Methods of Computation
    The two main methods for computing basic hypergeometric functions are: (1) numerical summation of the defining series given in §§17.4(i) and 17.4(ii); (2) modular transformations. …
    20: 34.10 Zeros
    Similarly the 6 j symbol (34.4.1) vanishes when the triangle conditions are not satisfied by any of the four 3 j symbols in the summation. …