About the Project

Einstein functions

AdvancedHelp

(0.002 seconds)

11—16 of 16 matching pages

11: 25.21 Software
§25.21(ii) Zeta Functions for Real Arguments
§25.21(iii) Zeta Functions for Complex Arguments
§25.21(iv) Hurwitz Zeta Function
No research software has been found for these functions. …
§25.21(vii) Fermi–Dirac and Bose–Einstein Integrals
12: 27.17 Other Applications
§27.17 Other Applications
Schroeder (2006) describes many of these applications, including the design of concert hall ceilings to scatter sound into broad lateral patterns for improved acoustic quality, precise measurements of delays of radar echoes from Venus and Mercury to confirm one of the relativistic effects predicted by Einstein’s theory of general relativity, and the use of primes in creating artistic graphical designs.
13: Bibliography B
  • H. F. Baker (1995) Abelian Functions: Abel’s Theorem and the Allied Theory of Theta Functions. Cambridge University Press, Cambridge.
  • J. S. Ball (2000) Automatic computation of zeros of Bessel functions and other special functions. SIAM J. Sci. Comput. 21 (4), pp. 1458–1464.
  • W. Barrett (1981) Mathieu functions of general order: Connection formulae, base functions and asymptotic formulae. I–V. Philos. Trans. Roy. Soc. London Ser. A 301, pp. 75–162.
  • G. Blanch and D. S. Clemm (1962) Tables Relating to the Radial Mathieu Functions. Vol. 1: Functions of the First Kind. U.S. Government Printing Office, Washington, D.C..
  • J. C. Bronski, L. D. Carr, B. Deconinck, J. N. Kutz, and K. Promislow (2001) Stability of repulsive Bose-Einstein condensates in a periodic potential. Phys. Rev. E (3) 63 (036612), pp. 1–11.
  • 14: Bibliography G
  • W. Gautschi (1993) On the computation of generalized Fermi-Dirac and Bose-Einstein integrals. Comput. Phys. Comm. 74 (2), pp. 233–238.
  • A. Gervois and H. Navelet (1985a) Integrals of three Bessel functions and Legendre functions. I. J. Math. Phys. 26 (4), pp. 633–644.
  • A. Gervois and H. Navelet (1985b) Integrals of three Bessel functions and Legendre functions. II. J. Math. Phys. 26 (4), pp. 645–655.
  • S. Goldstein (1927) Mathieu functions. Trans. Camb. Philos. Soc. 23, pp. 303–336.
  • A. J. Guttmann and T. Prellberg (1993) Staircase polygons, elliptic integrals, Heun functions, and lattice Green functions. Phys. Rev. E 47 (4), pp. R2233–R2236.
  • 15: Bibliography L
  • A. Laforgia (1984) Further inequalities for the gamma function. Math. Comp. 42 (166), pp. 597–600.
  • L. Lorch and P. Szegő (1964) Monotonicity of the differences of zeros of Bessel functions as a function of order. Proc. Amer. Math. Soc. 15 (1), pp. 91–96.
  • H. A. Lorentz, A. Einstein, H. Minkowski, and H. Weyl (1923) The Principle of Relativity: A Collection of Original Memoirs on the Special and General Theory of Relativity. Methuen and Co., Ltd., London.
  • T. A. Lowdon (1970) Integral representation of the Hankel function in terms of parabolic cylinder functions. Quart. J. Mech. Appl. Math. 23 (3), pp. 315–327.
  • Y. L. Luke (1959) Expansion of the confluent hypergeometric function in series of Bessel functions. Math. Tables Aids Comput. 13 (68), pp. 261–271.
  • 16: Bibliography D
  • H. T. Davis (1933) Tables of Higher Mathematical Functions I. Principia Press, Bloomington, Indiana.
  • A. Dienstfrey and J. Huang (2006) Integral representations for elliptic functions. J. Math. Anal. Appl. 316 (1), pp. 142–160.
  • K. Dilcher (2002) Bernoulli Numbers and Confluent Hypergeometric Functions. In Number Theory for the Millennium, I (Urbana, IL, 2000), pp. 343–363.
  • R. B. Dingle (1957a) The Bose-Einstein integrals p ( η ) = ( p ! ) 1 0 ϵ p ( e ϵ η 1 ) 1 𝑑 ϵ . Appl. Sci. Res. B. 6, pp. 240–244.
  • A. J. Durán (1993) Functions with given moments and weight functions for orthogonal polynomials. Rocky Mountain J. Math. 23, pp. 87–104.