About the Project

Dirac equation

AdvancedHelp

(0.002 seconds)

21—27 of 27 matching pages

21: Bibliography B
  • A. Bañuelos, R. A. Depine, and R. C. Mancini (1981) A program for computing the Fermi-Dirac functions. Comput. Phys. Comm. 21 (3), pp. 315–322.
  • A. P. Bassom, P. A. Clarkson, A. C. Hicks, and J. B. McLeod (1992) Integral equations and exact solutions for the fourth Painlevé equation. Proc. Roy. Soc. London Ser. A 437, pp. 1–24.
  • P. M. Batchelder (1967) An Introduction to Linear Difference Equations. Dover Publications Inc., New York.
  • F. Bethuel (1998) Vortices in Ginzburg-Landau Equations. In Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998), pp. 11–19.
  • G. Birkhoff and G. Rota (1989) Ordinary differential equations. Fourth edition, John Wiley & Sons, Inc., New York.
  • 22: Bibliography S
  • R. P. Sagar (1991a) A Gaussian quadrature for the calculation of generalized Fermi-Dirac integrals. Comput. Phys. Comm. 66 (2-3), pp. 271–275.
  • R. P. Sagar (1991b) On the evaluation of the Fermi-Dirac integrals. Astrophys. J. 376 (1, part 1), pp. 364–366.
  • T. Shiota (1986) Characterization of Jacobian varieties in terms of soliton equations. Invent. Math. 83 (2), pp. 333–382.
  • B. D. Sleeman (1969) Non-linear integral equations for Heun functions. Proc. Edinburgh Math. Soc. (2) 16, pp. 281–289.
  • R. Spigler (1984) The linear differential equation whose solutions are the products of solutions of two given differential equations. J. Math. Anal. Appl. 98 (1), pp. 130–147.
  • 23: 18.36 Miscellaneous Polynomials
    These are OP’s on the interval ( 1 , 1 ) with respect to an orthogonality measure obtained by adding constant multiples of “Dirac delta weights” at 1 and 1 to the weight function for the Jacobi polynomials. … Classes of such polynomials have been found that generalize the classical OP’s in the sense that they satisfy second order matrix differential equations with coefficients independent of the degree. …
    18.36.2 L n ( k ) ( x ) = ( 1 ) k ( n k ) ! n ! x k L n k ( k ) ( x ) ,
    18.36.7 T k ( y ) x y ′′ + x k x + k ( ( x + k + 1 ) y y ) = ( n 1 ) y .
    In §18.39(i) it is seen that the functions, w ( x ) H ^ n + 3 ( x ) , are solutions of a Schrödinger equation with a rational potential energy; and, in spite of first appearances, the Sturm oscillation theorem, Simon (2005c, Theorem 3.3, p. 35), is satisfied. …
    24: 9.11 Products
    §9.11(i) Differential Equation
    For an integral representation of the Dirac delta involving a product of two Ai functions see §1.17(ii). …
    25: Bibliography P
  • P. Painlevé (1906) Sur les équations différentielles du second ordre à points critiques fixès. C.R. Acad. Sc. Paris 143, pp. 1111–1117.
  • R. B. Paris (1992a) Smoothing of the Stokes phenomenon for high-order differential equations. Proc. Roy. Soc. London Ser. A 436, pp. 165–186.
  • S. Paszkowski (1988) Evaluation of Fermi-Dirac Integral. In Nonlinear Numerical Methods and Rational Approximation (Wilrijk, 1987), A. Cuyt (Ed.), Mathematics and Its Applications, Vol. 43, pp. 435–444.
  • S. Paszkowski (1991) Evaluation of the Fermi-Dirac integral of half-integer order. Zastos. Mat. 21 (2), pp. 289–301.
  • B. Pichon (1989) Numerical calculation of the generalized Fermi-Dirac integrals. Comput. Phys. Comm. 55 (2), pp. 127–136.
  • 26: 14.18 Sums
    For a series representation of the Dirac delta in terms of products of Legendre polynomials see (1.17.22). …
    27: Bibliography
  • A. S. Abdullaev (1985) Asymptotics of solutions of the generalized sine-Gordon equation, the third Painlevé equation and the d’Alembert equation. Dokl. Akad. Nauk SSSR 280 (2), pp. 265–268 (Russian).
  • V. È. Adler (1994) Nonlinear chains and Painlevé equations. Phys. D 73 (4), pp. 335–351.
  • H. M. Antia (1993) Rational function approximations for Fermi-Dirac integrals. The Astrophysical Journal Supplement Series 84, pp. 101–108.
  • F. M. Arscott (1967) The Whittaker-Hill equation and the wave equation in paraboloidal co-ordinates. Proc. Roy. Soc. Edinburgh Sect. A 67, pp. 265–276.
  • U. M. Ascher and L. R. Petzold (1998) Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.