About the Project

Coulomb potential barriers

AdvancedHelp

(0.001 seconds)

21—30 of 78 matching pages

21: 33.16 Connection Formulas
§33.16(i) F and G in Terms of f and h
§33.16(ii) f and h in Terms of F and G when ϵ > 0
§33.16(iii) f and h in Terms of W κ , μ ( z ) when ϵ < 0
§33.16(iv) s and c in Terms of F and G when ϵ > 0
§33.16(v) s and c in Terms of W κ , μ ( z ) when ϵ < 0
22: 33.25 Approximations
§33.25 Approximations
Cody and Hillstrom (1970) provides rational approximations of the phase shift σ 0 ( η ) = ph Γ ( 1 + i η ) (see (33.2.10)) for the ranges 0 η 2 , 2 η 4 , and 4 η . …
23: 33.10 Limiting Forms for Large ρ or Large | η |
§33.10(i) Large ρ
F ( η , ρ ) = sin ( θ ( η , ρ ) ) + o ( 1 ) ,
where θ ( η , ρ ) is defined by (33.2.9).
§33.10(ii) Large Positive η
§33.10(iii) Large Negative η
24: 33 Coulomb Functions
Chapter 33 Coulomb Functions
25: 33.11 Asymptotic Expansions for Large ρ
§33.11 Asymptotic Expansions for Large ρ
where θ ( η , ρ ) is defined by (33.2.9), and a and b are defined by (33.8.3). …
F ( η , ρ ) = g ( η , ρ ) cos θ + f ( η , ρ ) sin θ ,
G ( η , ρ ) = f ( η , ρ ) cos θ g ( η , ρ ) sin θ ,
F ( η , ρ ) = g ^ ( η , ρ ) cos θ + f ^ ( η , ρ ) sin θ ,
26: 33.20 Expansions for Small | ϵ |
§33.20(i) Case ϵ = 0
§33.20(ii) Power-Series in ϵ for the Regular Solution
§33.20(iii) Asymptotic Expansion for the Irregular Solution
§33.20(iv) Uniform Asymptotic Expansions
For a comprehensive collection of asymptotic expansions that cover f ( ϵ , ; r ) and h ( ϵ , ; r ) as ϵ 0 ± and are uniform in r , including unbounded values, see Curtis (1964a, §7). …
27: Bibliography H
  • R. L. Hall, N. Saad, and K. D. Sen (2010) Soft-core Coulomb potentials and Heun’s differential equation. J. Math. Phys. 51 (2), pp. Art. ID 022107, 19 pages.
  • M. Hiyama and H. Nakamura (1997) Two-center Coulomb functions. Comput. Phys. Comm. 103 (2-3), pp. 209–216.
  • L. E. Hoisington and G. Breit (1938) Calculation of Coulomb wave functions for high energies. Phys. Rev. 54 (8), pp. 627–628.
  • M. H. Hull and G. Breit (1959) Coulomb Wave Functions. In Handbuch der Physik, Bd. 41/1, S. Flügge (Ed.), pp. 408–465.
  • J. Humblet (1984) Analytical structure and properties of Coulomb wave functions for real and complex energies. Ann. Physics 155 (2), pp. 461–493.
  • 28: 33.7 Integral Representations
    §33.7 Integral Representations
    33.7.1 F ( η , ρ ) = ρ + 1 2 e i ρ ( π η / 2 ) | Γ ( + 1 + i η ) | 0 1 e 2 i ρ t t + i η ( 1 t ) i η d t ,
    33.7.2 H ( η , ρ ) = e i ρ ρ ( 2 + 1 ) ! C ( η ) 0 e t t i η ( t + 2 i ρ ) + i η d t ,
    33.7.3 H ( η , ρ ) = i e π η ρ + 1 ( 2 + 1 ) ! C ( η ) 0 ( exp ( i ( ρ tanh t 2 η t ) ) ( cosh t ) 2 + 2 + i ( 1 + t 2 ) exp ( ρ t + 2 η arctan t ) ) d t ,
    33.7.4 H + ( η , ρ ) = i e π η ρ + 1 ( 2 + 1 ) ! C ( η ) 1 i e i ρ t ( 1 t ) i η ( 1 + t ) + i η d t .
    29: Bibliography B
  • E. Bank and M. E. H. Ismail (1985) The attractive Coulomb potential polynomials. Constr. Approx. 1 (2), pp. 103–119.
  • A. R. Barnett (1981a) An algorithm for regular and irregular Coulomb and Bessel functions of real order to machine accuracy. Comput. Phys. Comm. 21 (3), pp. 297–314.
  • A. R. Barnett (1981b) KLEIN: Coulomb functions for real λ and positive energy to high accuracy. Comput. Phys. Comm. 24 (2), pp. 141–159.
  • A. R. Barnett (1982) COULFG: Coulomb and Bessel functions and their derivatives, for real arguments, by Steed’s method. Comput. Phys. Comm. 27, pp. 147–166.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • 30: Bibliography N
  • J. Negro, L. M. Nieto, and O. Rosas-Ortiz (2000) Confluent hypergeometric equations and related solvable potentials in quantum mechanics. J. Math. Phys. 41 (12), pp. 7964–7996.
  • T. D. Newton (1952) Coulomb Functions for Large Values of the Parameter η . Technical report Atomic Energy of Canada Limited, Chalk River, Ontario.
  • C. J. Noble and I. J. Thompson (1984) COULN, a program for evaluating negative energy Coulomb functions. Comput. Phys. Comm. 33 (4), pp. 413–419.
  • C. J. Noble (2004) Evaluation of negative energy Coulomb (Whittaker) functions. Comput. Phys. Comm. 159 (1), pp. 55–62.