About the Project

Chu%E2%80%93Vandermonde%20sums%20%28first%20and%20second%29

AdvancedHelp

(0.006 seconds)

21—30 of 365 matching pages

21: 8 Incomplete Gamma and Related
Functions
22: 17.6 Ο• 1 2 Function
β–Ί
First q -ChuVandermonde Sum
β–Ί
Second q -ChuVandermonde Sum
β–Ί
Heine’s First Transformation
β–Ί
Fine’s First Transformation
β–Ί
17.6.11 1 z 1 b ⁒ Ο• 1 2 ⁑ ( q , a ⁒ q b ⁒ q ; q , z ) = n = 0 ( a ⁒ q ; q ) n ⁒ ( a ⁒ z ⁒ q / b ; q ) 2 ⁒ n ⁒ b n ( z ⁒ q , a ⁒ q / b ; q ) n a ⁒ q ⁒ n = 0 ( a ⁒ q ; q ) n ⁒ ( a ⁒ z ⁒ q / b ; q ) 2 ⁒ n + 1 ⁒ ( b ⁒ q ) n ( z ⁒ q ; q ) n ⁒ ( a ⁒ q / b ; q ) n + 1 , | z | < 1 , | b | < 1 .
23: 3.4 Differentiation
β–Ί
B 2 5 = 1 120 ⁒ ( 6 10 ⁒ t 15 ⁒ t 2 + 20 ⁒ t 3 5 ⁒ t 4 ) ,
β–Ί
B 3 6 = 1 720 ⁒ ( 12 8 ⁒ t 45 ⁒ t 2 + 20 ⁒ t 3 + 15 ⁒ t 4 6 ⁒ t 5 ) ,
β–Ί
B 2 6 = 1 60 ⁒ ( 9 9 ⁒ t 30 ⁒ t 2 + 20 ⁒ t 3 + 5 ⁒ t 4 3 ⁒ t 5 ) ,
β–Ί
B 2 6 = 1 60 ⁒ ( 9 + 9 ⁒ t 30 ⁒ t 2 20 ⁒ t 3 + 5 ⁒ t 4 + 3 ⁒ t 5 ) ,
β–Ί
B 3 6 = 1 720 ⁒ ( 12 + 8 ⁒ t 45 ⁒ t 2 20 ⁒ t 3 + 15 ⁒ t 4 + 6 ⁒ t 5 ) .
24: Bibliography G
β–Ί
  • W. Gautschi (1994) Algorithm 726: ORTHPOL — a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules. ACM Trans. Math. Software 20 (1), pp. 21–62.
  • β–Ί
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • β–Ί
  • Ya. I. GranovskiΔ­, I. M. Lutzenko, and A. S. Zhedanov (1992) Mutual integrability, quadratic algebras, and dynamical symmetry. Ann. Phys. 217 (1), pp. 1–20.
  • 25: 8.26 Tables
    β–Ί
  • Khamis (1965) tabulates P ⁑ ( a , x ) for a = 0.05 ⁒ ( .05 ) ⁒ 10 ⁒ ( .1 ) ⁒ 20 ⁒ ( .25 ) ⁒ 70 , 0.0001 x 250 to 10D.

  • β–Ί
  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ⁑ ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ⁒ ( .01 ) ⁒ 2 to 7D; also ( x + n ) ⁒ e x ⁒ E n ⁑ ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ⁒ ( .01 ) ⁒ 0.1 ⁒ ( .05 ) ⁒ 0.5 to 6S.

  • β–Ί
  • Pagurova (1961) tabulates E n ⁑ ( x ) for n = 0 ⁒ ( 1 ) ⁒ 20 , x = 0 ⁒ ( .01 ) ⁒ 2 ⁒ ( .1 ) ⁒ 10 to 4-9S; e x ⁒ E n ⁑ ( x ) for n = 2 ⁒ ( 1 ) ⁒ 10 , x = 10 ⁒ ( .1 ) ⁒ 20 to 7D; e x ⁒ E p ⁑ ( x ) for p = 0 ⁒ ( .1 ) ⁒ 1 , x = 0.01 ⁒ ( .01 ) ⁒ 7 ⁒ ( .05 ) ⁒ 12 ⁒ ( .1 ) ⁒ 20 to 7S or 7D.

  • β–Ί
  • Zhang and Jin (1996, Table 19.1) tabulates E n ⁑ ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ⁒ ( .1 ) ⁒ 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 26: 23 Weierstrass Elliptic and Modular
    Functions
    27: 36.5 Stokes Sets
    β–Ί
    36.5.4 80 ⁒ x 5 40 ⁒ x 4 55 ⁒ x 3 + 5 ⁒ x 2 + 20 ⁒ x 1 = 0 ,
    β–Ί
    36.5.7 X = 9 20 + 20 ⁒ u 4 Y 2 20 ⁒ u 2 + 6 ⁒ u 2 ⁒ sign ⁑ ( z ) ,
    28: Bibliography W
    β–Ί
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • β–Ί
  • E. J. Weniger (1996) Computation of the Whittaker function of the second kind by summing its divergent asymptotic series with the help of nonlinear sequence transformations. Computers in Physics 10 (5), pp. 496–503.
  • 29: 32.8 Rational Solutions
    β–Ί
    32.8.3 w ⁑ ( z ; 3 ) = 3 ⁒ z 2 z 3 + 4 6 ⁒ z 2 ⁒ ( z 3 + 10 ) z 6 + 20 ⁒ z 3 80 ,
    β–Ί
    32.8.4 w ⁑ ( z ; 4 ) = 1 z + 6 ⁒ z 2 ⁒ ( z 3 + 10 ) z 6 + 20 ⁒ z 3 80 9 ⁒ z 5 ⁒ ( z 3 + 40 ) z 9 + 60 ⁒ z 6 + 11200 .
    β–Ί
    Q 3 ⁑ ( z ) = z 6 + 20 ⁒ z 3 80 ,
    30: 28.35 Tables
    β–Ί
  • Ince (1932) includes eigenvalues a n , b n , and Fourier coefficients for n = 0 or 1 ⁒ ( 1 ) ⁒ 6 , q = 0 ⁒ ( 1 ) ⁒ 10 ⁒ ( 2 ) ⁒ 20 ⁒ ( 4 ) ⁒ 40 ; 7D. Also ce n ⁑ ( x , q ) , se n ⁑ ( x , q ) for q = 0 ⁒ ( 1 ) ⁒ 10 , x = 1 ⁒ ( 1 ) ⁒ 90 , corresponding to the eigenvalues in the tables; 5D. Notation: a n = 𝑏𝑒 n 2 ⁒ q , b n = π‘π‘œ n 2 ⁒ q .

  • β–Ί
  • Kirkpatrick (1960) contains tables of the modified functions Ce n ⁑ ( x , q ) , Se n + 1 ⁑ ( x , q ) for n = 0 ⁒ ( 1 ) ⁒ 5 , q = 1 ⁒ ( 1 ) ⁒ 20 , x = 0.1 ⁒ ( .1 ) ⁒ 1 ; 4D or 5D.

  • β–Ί
  • National Bureau of Standards (1967) includes the eigenvalues a n ⁑ ( q ) , b n ⁑ ( q ) for n = 0 ⁒ ( 1 ) ⁒ 3 with q = 0 ⁒ ( .2 ) ⁒ 20 ⁒ ( .5 ) ⁒ 37 ⁒ ( 1 ) ⁒ 100 , and n = 4 ⁒ ( 1 ) ⁒ 15 with q = 0 ⁒ ( 2 ) ⁒ 100 ; Fourier coefficients for ce n ⁑ ( x , q ) and se n ⁑ ( x , q ) for n = 0 ⁒ ( 1 ) ⁒ 15 , n = 1 ⁒ ( 1 ) ⁒ 15 , respectively, and various values of q in the interval [ 0 , 100 ] ; joining factors g e , n ⁑ ( q ) , f e , n ⁑ ( q ) for n = 0 ⁒ ( 1 ) ⁒ 15 with q = 0 ⁒ ( .5 ⁒  to  ⁒ 10 ) ⁒ 100 (but in a different notation). Also, eigenvalues for large values of q . Precision is generally 8D.

  • β–Ί
  • Zhang and Jin (1996, pp. 521–532) includes the eigenvalues a n ⁑ ( q ) , b n + 1 ⁑ ( q ) for n = 0 ⁒ ( 1 ) ⁒ 4 , q = 0 ⁒ ( 1 ) ⁒ 50 ; n = 0 ⁒ ( 1 ) ⁒ 20 ( a ’s) or 19 ( b ’s), q = 1 , 3 , 5 , 10 , 15 , 25 , 50 ⁒ ( 50 ) ⁒ 200 . Fourier coefficients for ce n ⁑ ( x , 10 ) , se n + 1 ⁑ ( x , 10 ) , n = 0 ⁒ ( 1 ) ⁒ 7 . Mathieu functions ce n ⁑ ( x , 10 ) , se n + 1 ⁑ ( x , 10 ) , and their first x -derivatives for n = 0 ⁒ ( 1 ) ⁒ 4 , x = 0 ⁒ ( 5 ∘ ) ⁒ 90 ∘ . Modified Mathieu functions Mc n ( j ) ⁑ ( x , 10 ) , Ms n + 1 ( j ) ⁑ ( x , 10 ) , and their first x -derivatives for n = 0 ⁒ ( 1 ) ⁒ 4 , j = 1 , 2 , x = 0 ⁒ ( .2 ) ⁒ 4 . Precision is mostly 9S.

  • β–Ί
  • Blanch and Clemm (1965) includes the first and second zeros of Mc n ( 2 ) ⁑ ( x , q ) , Mc n ( 2 ) ⁑ ( x , q ) for n = 0 , 1 , and Ms n ( 2 ) ⁑ ( x , q ) , Ms n ( 2 ) ⁑ ( x , q ) for n = 1 , 2 , with q = 0 ⁒ ( .05 ) ⁒ 1 ; 7D.