About the Project

Ces%C3%from%20means

AdvancedHelp

(0.002 seconds)

1—10 of 493 matching pages

1: 19.8 Quadratic Transformations
§19.8(i) Gauss’s Arithmetic-Geometric Mean (AGM)
As n , a n and g n converge to a common limit M ( a 0 , g 0 ) called the AGM (Arithmetic-Geometric Mean) of a 0 and g 0 . …showing that the convergence of c n to 0 and of a n and g n to M ( a 0 , g 0 ) is quadratic in each case. … Again, p n and ε n converge quadratically to M ( a 0 , g 0 ) and 0, respectively, and Q n converges to 0 faster than quadratically. …
2: 28.1 Special Notation
ce ν ( z , q ) , se ν ( z , q ) , fe n ( z , q ) , ge n ( z , q ) , me ν ( z , q ) ,
Ce ν ( z , q ) , Se ν ( z , q ) , Fe n ( z , q ) , Ge n ( z , q ) ,
Abramowitz and Stegun (1964, Chapter 20)
Se n ( s , z ) = ce n ( z , q ) ce n ( 0 , q ) ,
Se n ( c , z ) = ce n ( z , q ) ce n ( 0 , q ) ,
3: 28.35 Tables
  • Ince (1932) includes eigenvalues a n , b n , and Fourier coefficients for n = 0 or 1 ( 1 ) 6 , q = 0 ( 1 ) 10 ( 2 ) 20 ( 4 ) 40 ; 7D. Also ce n ( x , q ) , se n ( x , q ) for q = 0 ( 1 ) 10 , x = 1 ( 1 ) 90 , corresponding to the eigenvalues in the tables; 5D. Notation: a n = 𝑏𝑒 n 2 q , b n = 𝑏𝑜 n 2 q .

  • Kirkpatrick (1960) contains tables of the modified functions Ce n ( x , q ) , Se n + 1 ( x , q ) for n = 0 ( 1 ) 5 , q = 1 ( 1 ) 20 , x = 0.1 ( .1 ) 1 ; 4D or 5D.

  • National Bureau of Standards (1967) includes the eigenvalues a n ( q ) , b n ( q ) for n = 0 ( 1 ) 3 with q = 0 ( .2 ) 20 ( .5 ) 37 ( 1 ) 100 , and n = 4 ( 1 ) 15 with q = 0 ( 2 ) 100 ; Fourier coefficients for ce n ( x , q ) and se n ( x , q ) for n = 0 ( 1 ) 15 , n = 1 ( 1 ) 15 , respectively, and various values of q in the interval [ 0 , 100 ] ; joining factors g e , n ( q ) , f e , n ( q ) for n = 0 ( 1 ) 15 with q = 0 ( .5  to  10 ) 100 (but in a different notation). Also, eigenvalues for large values of q . Precision is generally 8D.

  • Zhang and Jin (1996, pp. 521–532) includes the eigenvalues a n ( q ) , b n + 1 ( q ) for n = 0 ( 1 ) 4 , q = 0 ( 1 ) 50 ; n = 0 ( 1 ) 20 ( a ’s) or 19 ( b ’s), q = 1 , 3 , 5 , 10 , 15 , 25 , 50 ( 50 ) 200 . Fourier coefficients for ce n ( x , 10 ) , se n + 1 ( x , 10 ) , n = 0 ( 1 ) 7 . Mathieu functions ce n ( x , 10 ) , se n + 1 ( x , 10 ) , and their first x -derivatives for n = 0 ( 1 ) 4 , x = 0 ( 5 ) 90 . Modified Mathieu functions Mc n ( j ) ( x , 10 ) , Ms n + 1 ( j ) ( x , 10 ) , and their first x -derivatives for n = 0 ( 1 ) 4 , j = 1 , 2 , x = 0 ( .2 ) 4 . Precision is mostly 9S.

  • Ince (1932) includes the first zero for ce n , se n for n = 2 ( 1 ) 5 or 6 , q = 0 ( 1 ) 10 ( 2 ) 40 ; 4D. This reference also gives zeros of the first derivatives, together with expansions for small q .

  • 4: 28.12 Definitions and Basic Properties
    Without loss of generality, from now on we replace ν + 2 n by ν . …
    me n ( z , q ) = 2 ce n ( z , q ) , n = 0 , 1 , 2 , ,
    §28.12(iii) Functions ce ν ( z , q ) , se ν ( z , q ) , when ν
    28.12.14 ce ν ( z , q ) = ce ν ( z , q ) = ce ν ( z , q ) ,
    Again, the limiting values of ce ν ( z , q ) and se ν ( z , q ) as ν n ( 0 ) are not the functions ce n ( z , q ) and se n ( z , q ) defined in §28.2(vi). …
    5: 28.28 Integrals, Integral Representations, and Integral Equations
    28.28.2 1 2 π 0 2 π e 2 i h w ce n ( t , h 2 ) d t = i n ce n ( α , h 2 ) Mc n ( 1 ) ( z , h ) ,
    28.28.15 0 cos ( 2 h cos y cosh t ) Ce 2 n ( t , h 2 ) d t = ( 1 ) n + 1 1 2 π Mc 2 n ( 2 ) ( 0 , h ) ce 2 n ( y , h 2 ) ,
    28.28.16 0 sin ( 2 h cos y cosh t ) Ce 2 n ( t , h 2 ) d t = π A 0 2 n ( h 2 ) 2 ce 2 n ( 1 2 π , h 2 ) ( ce 2 n ( y , h 2 ) 2 π C 2 n ( h 2 ) fe 2 n ( y , h 2 ) ) ,
    28.28.49 α ^ n , m ( c ) = 1 2 π 0 2 π cos t ce n ( t , h 2 ) ce m ( t , h 2 ) d t = ( 1 ) p + 1 2 i π ce n ( 0 , h 2 ) ce m ( 0 , h 2 ) h Dc 0 ( n , m , 0 ) .
    6: 18.42 Software
    For another listing of Web-accessible software for the functions in this chapter, see GAMS (class C3). …
    7: 28.2 Definitions and Basic Properties
    Period π means that the eigenfunction has the property w ( z + π ) = w ( z ) , whereas antiperiod π means that w ( z + π ) = w ( z ) . Even parity means w ( z ) = w ( z ) , and odd parity means w ( z ) = w ( z ) . …
    ce 0 ( z , 0 ) = 1 / 2 ,
    ce n ( z , 0 ) = cos ( n z ) ,
    8: 28.11 Expansions in Series of Mathieu Functions
    28.11.1 f ( z ) = α 0 ce 0 ( z , q ) + n = 1 ( α n ce n ( z , q ) + β n se n ( z , q ) ) ,
    α n = 1 π 0 2 π f ( x ) ce n ( x , q ) d x ,
    28.11.3 1 = 2 n = 0 A 0 2 n ( q ) ce 2 n ( z , q ) ,
    28.11.4 cos 2 m z = n = 0 A 2 m 2 n ( q ) ce 2 n ( z , q ) , m 0 ,
    28.11.5 cos ( 2 m + 1 ) z = n = 0 A 2 m + 1 2 n + 1 ( q ) ce 2 n + 1 ( z , q ) ,
    9: 28.6 Expansions for Small q
    (Table 28.6.1 is reproduced from Meixner et al. (1980, §2.4).) …
    §28.6(ii) Functions ce n and se n
    28.6.21 2 1 / 2 ce 0 ( z , q ) = 1 1 2 q cos 2 z + 1 32 q 2 ( cos 4 z 2 ) 1 128 q 3 ( 1 9 cos 6 z 11 cos 2 z ) + ,
    28.6.22 ce 1 ( z , q ) = cos z 1 8 q cos 3 z + 1 128 q 2 ( 2 3 cos 5 z 2 cos 3 z cos z ) 1 1024 q 3 ( 1 9 cos 7 z 8 9 cos 5 z 1 3 cos 3 z + 2 cos z ) + ,
    28.6.24 ce 2 ( z , q ) = cos 2 z 1 4 q ( 1 3 cos 4 z 1 ) + 1 128 q 2 ( 1 3 cos 6 z 76 9 cos 2 z ) + ,
    10: 28.3 Graphics
    See accompanying text
    Figure 28.3.1: ce 2 n ( x , 1 ) for 0 x π / 2 , n = 0 , 1 , 2 , 3 . Magnify
    See accompanying text
    Figure 28.3.2: ce 2 n ( x , 10 ) for 0 x π / 2 , n = 0 , 1 , 2 , 3 . Magnify
    See accompanying text
    Figure 28.3.3: ce 2 n + 1 ( x , 1 ) for 0 x π / 2 , n = 0 , 1 , 2 , 3 . Magnify
    See accompanying text
    Figure 28.3.4: ce 2 n + 1 ( x , 10 ) for 0 x π / 2 , n = 0 , 1 , 2 , 3 . Magnify
    See accompanying text
    Figure 28.3.9: ce 0 ( x , q ) for 0 x 2 π , 0 q 10 . Magnify 3D Help