About the Project

Ces%C3%A0ro%20summability

AdvancedHelp

(0.001 seconds)

11—20 of 128 matching pages

11: 28.22 Connection Formulas
28.22.5 g e , 2 m ( h ) = ( 1 ) m 2 π ce 2 m ( 1 2 π , h 2 ) A 0 2 m ( h 2 ) ,
28.22.6 g e , 2 m + 1 ( h ) = ( 1 ) m + 1 2 π ce 2 m + 1 ( 1 2 π , h 2 ) h A 1 2 m + 1 ( h 2 ) ,
fe m ( 0 , h 2 ) = 1 2 π C m ( h 2 ) ( g e , m ( h ) ) 2 ce m ( 0 , h 2 ) ,
12: 28.12 Definitions and Basic Properties
me n ( z , q ) = 2 ce n ( z , q ) , n = 0 , 1 , 2 , ,
§28.12(iii) Functions ce ν ( z , q ) , se ν ( z , q ) , when ν
28.12.12 ce ν ( z , q ) = 1 2 ( me ν ( z , q ) + me ν ( z , q ) ) ,
28.12.14 ce ν ( z , q ) = ce ν ( z , q ) = ce ν ( z , q ) ,
Again, the limiting values of ce ν ( z , q ) and se ν ( z , q ) as ν n ( 0 ) are not the functions ce n ( z , q ) and se n ( z , q ) defined in §28.2(vi). …
13: 28.28 Integrals, Integral Representations, and Integral Equations
28.28.2 1 2 π 0 2 π e 2 i h w ce n ( t , h 2 ) d t = i n ce n ( α , h 2 ) Mc n ( 1 ) ( z , h ) ,
28.28.15 0 cos ( 2 h cos y cosh t ) Ce 2 n ( t , h 2 ) d t = ( 1 ) n + 1 1 2 π Mc 2 n ( 2 ) ( 0 , h ) ce 2 n ( y , h 2 ) ,
28.28.16 0 sin ( 2 h cos y cosh t ) Ce 2 n ( t , h 2 ) d t = π A 0 2 n ( h 2 ) 2 ce 2 n ( 1 2 π , h 2 ) ( ce 2 n ( y , h 2 ) 2 π C 2 n ( h 2 ) fe 2 n ( y , h 2 ) ) ,
28.28.49 α ^ n , m ( c ) = 1 2 π 0 2 π cos t ce n ( t , h 2 ) ce m ( t , h 2 ) d t = ( 1 ) p + 1 2 i π ce n ( 0 , h 2 ) ce m ( 0 , h 2 ) h Dc 0 ( n , m , 0 ) .
14: 28.2 Definitions and Basic Properties
ce 0 ( z , 0 ) = 1 / 2 ,
ce n ( z , 0 ) = cos ( n z ) ,
28.2.34 ce 2 n ( z , q ) = ( 1 ) n ce 2 n ( 1 2 π z , q ) ,
15: 28.23 Expansions in Series of Bessel Functions
28.23.6 Mc 2 m ( j ) ( z , h ) = ( 1 ) m ( ce 2 m ( 0 , h 2 ) ) 1 = 0 ( 1 ) A 2 2 m ( h 2 ) 𝒞 2 ( j ) ( 2 h cosh z ) ,
28.23.7 Mc 2 m ( j ) ( z , h ) = ( 1 ) m ( ce 2 m ( 1 2 π , h 2 ) ) 1 = 0 A 2 2 m ( h 2 ) 𝒞 2 ( j ) ( 2 h sinh z ) ,
28.23.8 Mc 2 m + 1 ( j ) ( z , h ) = ( 1 ) m ( ce 2 m + 1 ( 0 , h 2 ) ) 1 = 0 ( 1 ) A 2 + 1 2 m + 1 ( h 2 ) 𝒞 2 + 1 ( j ) ( 2 h cosh z ) ,
28.23.9 Mc 2 m + 1 ( j ) ( z , h ) = ( 1 ) m + 1 ( ce 2 m + 1 ( 1 2 π , h 2 ) ) 1 coth z = 0 ( 2 + 1 ) A 2 + 1 2 m + 1 ( h 2 ) 𝒞 2 + 1 ( j ) ( 2 h sinh z ) ,
16: 28.6 Expansions for Small q
§28.6(ii) Functions ce n and se n
28.6.21 2 1 / 2 ce 0 ( z , q ) = 1 1 2 q cos 2 z + 1 32 q 2 ( cos 4 z 2 ) 1 128 q 3 ( 1 9 cos 6 z 11 cos 2 z ) + ,
28.6.22 ce 1 ( z , q ) = cos z 1 8 q cos 3 z + 1 128 q 2 ( 2 3 cos 5 z 2 cos 3 z cos z ) 1 1024 q 3 ( 1 9 cos 7 z 8 9 cos 5 z 1 3 cos 3 z + 2 cos z ) + ,
28.6.24 ce 2 ( z , q ) = cos 2 z 1 4 q ( 1 3 cos 4 z 1 ) + 1 128 q 2 ( 1 3 cos 6 z 76 9 cos 2 z ) + ,
28.6.26 ce m ( z , q ) = cos m z q 4 ( 1 m + 1 cos ( m + 2 ) z 1 m 1 cos ( m 2 ) z ) + q 2 32 ( 1 ( m + 1 ) ( m + 2 ) cos ( m + 4 ) z + 1 ( m 1 ) ( m 2 ) cos ( m 4 ) z 2 ( m 2 + 1 ) ( m 2 1 ) 2 cos m z ) + .
17: 29.14 Orthogonality
29.14.5 𝑐𝐸 2 n + 1 m ( s , k 2 ) 𝑐𝐸 2 n + 1 m ( K + i t , k 2 ) ,
18: 28.14 Fourier Series
28.14.2 ce ν ( z , q ) = m = c 2 m ν ( q ) cos ( ν + 2 m ) z ,
19: 29.5 Special Cases and Limiting Forms
lim 𝐸𝑐 ν m ( z , k 2 ) = ce m ( 1 2 π z , θ ) ,
where ce m ( z , θ ) and se m ( z , θ ) are Mathieu functions; see §28.2(vi).
20: Guide to Searching the DLMF
  • The following standard special functions: si, Si, ci, Ci, shi, Shi, ce, Ce, se, Se, ln, Ln, Lommels, LommelS, Jacobiphi, and the list is still growing.