About the Project

Bessel integral

AdvancedHelp

(0.008 seconds)

11—20 of 95 matching pages

11: 10.71 Integrals
x M ν 2 ( x ) d x = x ( ber ν x bei ν x ber ν x bei ν x ) ,
x N ν 2 ( x ) d x = x ( ker ν x kei ν x ker ν x kei ν x ) ,
12: 10.77 Software
§10.77(ix) Integrals of Bessel Functions
13: 6.7 Integral Representations
6.7.15 f ( z ) = 2 0 K 0 ( 2 z t ) cos t d t ,
6.7.16 g ( z ) = 2 0 K 0 ( 2 z t ) sin t d t .
14: Bibliography P
  • R. Piessens (1982) Automatic computation of Bessel function integrals. Comput. Phys. Comm. 25 (3), pp. 289–295.
  • R. Piessens and M. Branders (1983) Modified Clenshaw-Curtis method for the computation of Bessel function integrals. BIT 23 (3), pp. 370–381.
  • R. Piessens and M. Branders (1984) Algorithm 28. Algorithm for the computation of Bessel function integrals. J. Comput. Appl. Math. 11 (1), pp. 119–137.
  • R. Piessens and M. Branders (1985) A survey of numerical methods for the computation of Bessel function integrals. Rend. Sem. Mat. Univ. Politec. Torino (Special Issue), pp. 249–265.
  • M. Puoskari (1988) A method for computing Bessel function integrals. J. Comput. Phys. 75 (2), pp. 334–344.
  • 15: 10.54 Integral Representations
    §10.54 Integral Representations
    10.54.1 𝗃 n ( z ) = z n 2 n + 1 n ! 0 π cos ( z cos θ ) ( sin θ ) 2 n + 1 d θ .
    𝗁 n ( 1 ) ( z ) = ( i ) n + 1 π i ( 1 + ) e i z t Q n ( t ) d t ,
    16: 13.16 Integral Representations
    13.16.2 M κ , μ ( z ) = Γ ( 1 + 2 μ ) z λ Γ ( 1 + 2 μ 2 λ ) Γ ( 2 λ ) 0 1 M κ λ , μ λ ( z t ) e 1 2 z ( t 1 ) t μ λ 1 2 ( 1 t ) 2 λ 1 d t , μ + 1 2 > λ > 0 ,
    13.16.3 1 Γ ( 1 + 2 μ ) M κ , μ ( z ) = z e 1 2 z Γ ( 1 2 + μ + κ ) 0 e t t κ 1 2 J 2 μ ( 2 z t ) d t , ( κ + μ ) + 1 2 > 0 ,
    13.16.4 1 Γ ( 1 + 2 μ ) M κ , μ ( z ) = z e 1 2 z Γ ( 1 2 + μ κ ) 0 e t t κ 1 2 I 2 μ ( 2 z t ) d t , ( κ μ ) 1 2 < 0 .
    13.16.8 W κ , μ ( z ) = 2 z e 1 2 z Γ ( 1 2 + μ κ ) Γ ( 1 2 μ κ ) 0 e t t κ 1 2 K 2 μ ( 2 z t ) d t , ( μ κ ) + 1 2 > 0 ,
    17: 13.10 Integrals
    13.10.8 1 2 π i ( 0 + ) e t z t a 𝐌 ( a , b , y / t ) d t = 1 Γ ( a ) z 1 2 ( 2 a b 1 ) y 1 2 ( 1 b ) I b 1 ( 2 z y ) , z > 0 .
    13.10.9 1 2 π i ( 0 + ) e t z t a U ( a , b , y / t ) d t = 2 z 1 2 ( 2 a b 1 ) y 1 2 ( 1 b ) Γ ( a ) Γ ( a b + 1 ) K b 1 ( 2 z y ) , z > 0 .
    13.10.13 0 e t t b 1 1 2 ν 𝐌 ( a , b , t ) J ν ( 2 x t ) d t = x a + 1 2 ν e x 𝐌 ( ν b + 1 , ν a + 1 , x ) , x > 0 , 2 a < ν + 5 2 , b > 0 ,
    13.10.14 0 e t t 1 2 ν 𝐌 ( a , b , t ) J ν ( 2 x t ) d t = x 1 2 ν e x Γ ( b a ) U ( a , a b + ν + 2 , x ) , x > 0 , 1 < ν < 2 ( b a ) 1 2 ,
    13.10.15 0 t 1 2 ν U ( a , b , t ) J ν ( 2 x t ) d t = Γ ( ν b + 2 ) Γ ( a ) x 1 2 ν U ( ν b + 2 , ν a + 2 , x ) , x > 0 , max ( b 2 , 1 ) < ν < 2 a + 1 2 ,
    18: Bibliography G
  • B. Gabutti (1979) On high precision methods for computing integrals involving Bessel functions. Math. Comp. 33 (147), pp. 1049–1057.
  • B. Gabutti (1980) On the generalization of a method for computing Bessel function integrals. J. Comput. Appl. Math. 6 (2), pp. 167–168.
  • A. Gervois and H. Navelet (1985a) Integrals of three Bessel functions and Legendre functions. I. J. Math. Phys. 26 (4), pp. 633–644.
  • A. Gervois and H. Navelet (1985b) Integrals of three Bessel functions and Legendre functions. II. J. Math. Phys. 26 (4), pp. 645–655.
  • M. L. Glasser (1979) A method for evaluating certain Bessel integrals. Z. Angew. Math. Phys. 30 (4), pp. 722–723.
  • 19: 13.23 Integrals
    13.23.6 1 Γ ( 1 + 2 μ ) 2 π i ( 0 + ) e z t + 1 2 t 1 t κ M κ , μ ( t 1 ) d t = z κ 1 2 Γ ( 1 2 + μ κ ) I 2 μ ( 2 z ) , z > 0 .
    13.23.7 1 2 π i ( 0 + ) e z t + 1 2 t 1 t κ W κ , μ ( t 1 ) d t = 2 z κ 1 2 Γ ( 1 2 + μ κ ) Γ ( 1 2 μ κ ) K 2 μ ( 2 z ) , z > 0 .
    13.23.9 0 e 1 2 t t μ 1 2 ( ν + 1 ) M κ , μ ( t ) J ν ( 2 x t ) d t = Γ ( 1 + 2 μ ) Γ ( 1 2 μ + κ + ν ) e 1 2 x x 1 2 ( κ μ 3 2 ) M 1 2 ( κ + 3 μ ν + 1 2 ) , 1 2 ( κ μ + ν 1 2 ) ( x ) , x > 0 , 1 2 < μ < ( κ + 1 2 ν ) + 3 4 ,
    13.23.11 0 e 1 2 t t 1 2 ( ν 1 ) μ W κ , μ ( t ) J ν ( 2 x t ) d t = Γ ( ν 2 μ + 1 ) Γ ( 1 2 + μ κ ) e 1 2 x x 1 2 ( μ κ 3 2 ) W 1 2 ( κ + 3 μ ν 1 2 ) , 1 2 ( κ μ + ν + 1 2 ) ( x ) , x > 0 , max ( 2 μ 1 , 1 ) < ν < 2 μ κ + 3 2 ,
    13.23.12 0 e 1 2 t t 1 2 ( ν 1 ) μ W κ , μ ( t ) J ν ( 2 x t ) d t = Γ ( ν 2 μ + 1 ) Γ ( 3 2 μ κ + ν ) e 1 2 x x 1 2 ( μ + κ 3 2 ) M 1 2 ( κ 3 μ + ν + 1 2 ) , 1 2 ( ν μ κ + 1 2 ) ( x ) , x > 0 , max ( 2 μ 1 , 1 ) < ν .
    20: 8.6 Integral Representations
    8.6.2 γ ( a , z ) = z 1 2 a 0 e t t 1 2 a 1 J a ( 2 z t ) d t , a > 0 .
    8.6.6 Γ ( a , z ) = 2 z 1 2 a e z Γ ( 1 a ) 0 e t t 1 2 a K a ( 2 z t ) d t , a < 1 ,