About the Project

Bernoulli%20monosplines

AdvancedHelp

(0.001 seconds)

11—20 of 144 matching pages

11: 24.19 Methods of Computation
§24.19(i) Bernoulli and Euler Numbers and Polynomials
For algorithms for computing B n , E n , B n ( x ) , and E n ( x ) see Spanier and Oldham (1987, pp. 37, 41, 171, and 179–180).
§24.19(ii) Values of B n Modulo p
We list here three methods, arranged in increasing order of efficiency.
  • Tanner and Wagstaff (1987) derives a congruence ( mod p ) for Bernoulli numbers in terms of sums of powers. See also §24.10(iii).

  • 12: 24.14 Sums
    §24.14 Sums
    §24.14(i) Quadratic Recurrence Relations
    24.14.2 k = 0 n ( n k ) B k B n k = ( 1 n ) B n n B n 1 .
    §24.14(ii) Higher-Order Recurrence Relations
    For other sums involving Bernoulli and Euler numbers and polynomials see Hansen (1975, pp. 331–347) and Prudnikov et al. (1990, pp. 383–386).
    13: 25.6 Integer Arguments
    §25.6(i) Function Values
    25.6.2 ζ ( 2 n ) = ( 2 π ) 2 n 2 ( 2 n ) ! | B 2 n | , n = 1 , 2 , 3 , .
    25.6.3 ζ ( n ) = B n + 1 n + 1 , n = 1 , 2 , 3 , .
    25.6.6 ζ ( 2 k + 1 ) = ( 1 ) k + 1 ( 2 π ) 2 k + 1 2 ( 2 k + 1 ) ! 0 1 B 2 k + 1 ( t ) cot ( π t ) d t , k = 1 , 2 , 3 , .
    25.6.15 ζ ( 2 n ) = ( 1 ) n + 1 ( 2 π ) 2 n 2 ( 2 n ) ! ( 2 n ζ ( 1 2 n ) ( ψ ( 2 n ) ln ( 2 π ) ) B 2 n ) .
    14: 24.13 Integrals
    §24.13(i) Bernoulli Polynomials
    24.13.4 0 1 / 2 B n ( t ) d t = 1 2 n + 1 2 n B n + 1 n + 1 ,
    24.13.6 0 1 B n ( t ) B m ( t ) d t = ( 1 ) n 1 m ! n ! ( m + n ) ! B m + n .
    For integrals of the form 0 x B n ( t ) B m ( t ) d t and 0 x B n ( t ) B m ( t ) B k ( t ) d t see Agoh and Dilcher (2011). …
    §24.13(iii) Compendia
    15: 24.5 Recurrence Relations
    §24.5 Recurrence Relations
    24.5.1 k = 0 n 1 ( n k ) B k ( x ) = n x n 1 , n = 2 , 3 , ,
    24.5.3 k = 0 n 1 ( n k ) B k = 0 , n = 2 , 3 , ,
    §24.5(ii) Other Identities
    §24.5(iii) Inversion Formulas
    16: 24.21 Software
    §24.21(ii) B n , B n ( x ) , E n , and E n ( x )
    17: 24.10 Arithmetic Properties
    §24.10 Arithmetic Properties
    §24.10(i) Von Staudt–Clausen Theorem
    §24.10(ii) Kummer Congruences
    §24.10(iii) Voronoi’s Congruence
    §24.10(iv) Factors
    18: 25.1 Special Notation
    k , m , n nonnegative integers.
    B n , B n ( x ) Bernoulli number and polynomial (§24.2(i)).
    B ~ n ( x ) periodic Bernoulli function B n ( x x ) .
    19: 24.9 Inequalities
    §24.9 Inequalities
    24.9.1 | B 2 n | > | B 2 n ( x ) | , 1 > x > 0 ,
    24.9.2 ( 2 2 1 2 n ) | B 2 n | | B 2 n ( x ) B 2 n | , 1 x 0 .
    24.9.4 2 ( 2 n + 1 ) ! ( 2 π ) 2 n + 1 > ( 1 ) n + 1 B 2 n + 1 ( x ) > 0 , n = 2 , 3 , ,
    24.9.6 5 π n ( n π e ) 2 n > ( 1 ) n + 1 B 2 n > 4 π n ( n π e ) 2 n ,
    20: Bibliography D
  • H. Delange (1991) Sur les zéros réels des polynômes de Bernoulli. Ann. Inst. Fourier (Grenoble) 41 (2), pp. 267–309 (French).
  • K. Dilcher (1987a) Asymptotic behaviour of Bernoulli, Euler, and generalized Bernoulli polynomials. J. Approx. Theory 49 (4), pp. 321–330.
  • K. Dilcher (1988) Zeros of Bernoulli, generalized Bernoulli and Euler polynomials. Mem. Amer. Math. Soc. 73 (386), pp. iv+94.
  • K. Dilcher (1996) Sums of products of Bernoulli numbers. J. Number Theory 60 (1), pp. 23–41.
  • K. Dilcher (2002) Bernoulli Numbers and Confluent Hypergeometric Functions. In Number Theory for the Millennium, I (Urbana, IL, 2000), pp. 343–363.