About the Project

Barrett’s

AdvancedHelp

(0.002 seconds)

31—40 of 602 matching pages

31: 25.19 Tables
  • Abramowitz and Stegun (1964) tabulates: ζ ( n ) , n = 2 , 3 , 4 , , 20D (p. 811); Li 2 ( 1 x ) , x = 0 ( .01 ) 0.5 , 9D (p. 1005); f ( θ ) , θ = 15 ( 1 ) 30 ( 2 ) 90 ( 5 ) 180 , f ( θ ) + θ ln θ , θ = 0 ( 1 ) 15 , 6D (p. 1006). Here f ( θ ) denotes Clausen’s integral, given by the right-hand side of (25.12.9).

  • Cloutman (1989) tabulates Γ ( s + 1 ) F s ( x ) , where F s ( x ) is the Fermi–Dirac integral (25.12.14), for s = 1 2 , 1 2 , 3 2 , 5 2 , x = 5 ( .05 ) 25 , to 12S.

  • Fletcher et al. (1962, §22.1) lists many sources for earlier tables of ζ ( s ) for both real and complex s . §22.133 gives sources for numerical values of coefficients in the Riemann–Siegel formula, §22.15 describes tables of values of ζ ( s , a ) , and §22.17 lists tables for some Dirichlet L -functions for real characters. For tables of dilogarithms, polylogarithms, and Clausen’s integral see §§22.84–22.858.

  • 32: 13.11 Series
    13.11.1 M ( a , b , z ) = Γ ( a 1 2 ) e 1 2 z ( 1 4 z ) 1 2 a s = 0 ( 2 a 1 ) s ( 2 a b ) s ( b ) s s ! ( a 1 2 + s ) I a 1 2 + s ( 1 2 z ) , a + 1 2 , b 0 , 1 , 2 , ,
    13.11.2 M ( a , b , z ) = Γ ( b a 1 2 ) e 1 2 z ( 1 4 z ) a b + 1 2 s = 0 ( 1 ) s ( 2 b 2 a 1 ) s ( b 2 a ) s ( b a 1 2 + s ) ( b ) s s ! I b a 1 2 + s ( 1 2 z ) , b a + 1 2 , b 0 , 1 , 2 , .
    13.11.3 𝐌 ( a , b , z ) = e 1 2 z s = 0 A s ( b 2 a ) 1 2 ( 1 b s ) ( 1 2 z ) 1 2 ( 1 b + s ) J b 1 + s ( 2 z ( b 2 a ) ) ,
    33: 12.9 Asymptotic Expansions for Large Variable
    12.9.1 U ( a , z ) e 1 4 z 2 z a 1 2 s = 0 ( 1 ) s ( 1 2 + a ) 2 s s ! ( 2 z 2 ) s , | ph z | 3 4 π δ ( < 3 4 π ) ,
    12.9.2 V ( a , z ) 2 π e 1 4 z 2 z a 1 2 s = 0 ( 1 2 a ) 2 s s ! ( 2 z 2 ) s , | ph z | 1 4 π δ ( < 1 4 π ) .
    12.9.3 U ( a , z ) e 1 4 z 2 z a 1 2 s = 0 ( 1 ) s ( 1 2 + a ) 2 s s ! ( 2 z 2 ) s ± i 2 π Γ ( 1 2 + a ) e i π a e 1 4 z 2 z a 1 2 s = 0 ( 1 2 a ) 2 s s ! ( 2 z 2 ) s , 1 4 π + δ ± ph z 5 4 π δ ,
    12.9.4 V ( a , z ) 2 π e 1 4 z 2 z a 1 2 s = 0 ( 1 2 a ) 2 s s ! ( 2 z 2 ) s ± i Γ ( 1 2 a ) e 1 4 z 2 z a 1 2 s = 0 ( 1 ) s ( 1 2 + a ) 2 s s ! ( 2 z 2 ) s , 1 4 π + δ ± ph z 3 4 π δ .
    34: 21.1 Special Notation
    g , h positive integers.
    S g set of g -dimensional vectors with elements in S .
    | S | number of elements of the set S .
    S 1 S 2 set of all elements of the form “ element of  S 1 × element of  S 2 ”.
    S 1 / S 2 set of all elements of S 1 , modulo elements of S 2 . Thus two elements of S 1 / S 2 are equivalent if they are both in S 1 and their difference is in S 2 . (For an example see §20.12(ii).)
    35: 3.9 Acceleration of Convergence
    §3.9(ii) Euler’s Transformation of Series
    Euler’s transformation is usually applied to alternating series. …
    §3.9(iii) Aitken’s Δ 2 -Process
    §3.9(v) Levin’s and Weniger’s Transformations
    We give a special form of Levin’s transformation in which the sequence s = { s n } of partial sums s n = j = 0 n a j is transformed into: …
    36: 25.11 Hurwitz Zeta Function
    ζ ( s , a ) has a meromorphic continuation in the s -plane, its only singularity in being a simple pole at s = 1 with residue 1 . …
    s -Derivatives
    In (25.11.18)–(25.11.24) primes on ζ denote derivatives with respect to s . … where G is Catalan’s constant: … As β ± with s fixed, s > 1 , …
    37: 7.16 Generalized Error Functions
    §7.16 Generalized Error Functions
    Generalizations of the error function and Dawson’s integral are 0 x e t p d t and 0 x e t p d t . …
    38: 17.5 ϕ 0 0 , ϕ 0 1 , ϕ 1 1 Functions
    39: 30.11 Radial Spheroidal Wave Functions
    S n m ( 3 ) ( z , γ ) = S n m ( 1 ) ( z , γ ) + i S n m ( 2 ) ( z , γ ) ,
    S n m ( 4 ) ( z , γ ) = S n m ( 1 ) ( z , γ ) i S n m ( 2 ) ( z , γ ) .
    See accompanying text
    Figure 30.11.1: S n 0 ( 1 ) ( x , 2 ) , n = 0 , 1 , 1 x 10 . Magnify
    See accompanying text
    Figure 30.11.2: S n 0 ( 1 ) ( i y , 2 i ) , n = 0 , 1 , 0 y 10 . Magnify
    See accompanying text
    Figure 30.11.3: S n 1 ( 1 ) ( x , 2 ) , n = 1 , 2 , 1 x 10 . Magnify
    40: 12.11 Zeros
    When a > 1 2 the zeros are asymptotically given by z a , s and z a , s ¯ , where s is a large positive integer and … Numerical calculations in this case show that z 1 2 , s corresponds to the s th zero on the string; compare §7.13(ii). … For example, let the s th real zeros of U ( a , x ) and U ( a , x ) , counted in descending order away from the point z = 2 a , be denoted by u a , s and u a , s , respectively. …Here α = μ 4 3 a s , a s denoting the s th negative zero of the function Ai (see §9.9(i)). … where β = μ 4 3 a s , a s denoting the s th negative zero of the function Ai and …