About the Project

Bailey pairs

AdvancedHelp

(0.002 seconds)

21—30 of 96 matching pages

21: 10.2 Definitions
§10.2(iii) Numerically Satisfactory Pairs of Solutions
Table 10.2.1 lists numerically satisfactory pairs of solutions (§2.7(iv)) of (10.2.1) for the stated intervals or regions in the case ν 0 . …
Table 10.2.1: Numerically satisfactory pairs of solutions of Bessel’s equation.
Pair Interval or Region
22: Bibliography B
  • D. H. Bailey (1995) A Fortran-90 based multiprecision system. ACM Trans. Math. Software 21 (4), pp. 379–387.
  • W. N. Bailey (1928) Products of generalized hypergeometric series. Proc. London Math. Soc. (2) 28 (2), pp. 242–254.
  • W. N. Bailey (1929) Transformations of generalized hypergeometric series. Proc. London Math. Soc. (2) 29 (2), pp. 495–502.
  • W. N. Bailey (1938) The generating function of Jacobi polynomials. J. London Math. Soc. 13, pp. 8–12.
  • W. N. Bailey (1964) Generalized Hypergeometric Series. Stechert-Hafner, Inc., New York.
  • 23: 16.12 Products
    24: 17.7 Special Cases of Higher ϕ s r Functions
    q -Analog of Bailey’s F 1 2 ( 1 ) Sum
    First q -Analog of Bailey’s F 3 4 ( 1 ) Sum
    Second q -Analog of Bailey’s F 3 4 ( 1 ) Sum
    Bailey’s Nonterminating Extension of Jackson’s ϕ 7 8 Sum
    25: 14.2 Differential Equations
    §14.2(iii) Numerically Satisfactory Solutions
    Hence they comprise a numerically satisfactory pair of solutions (§2.7(iv)) of (14.2.2) in the interval 1 < x < 1 . When μ ν = 0 , 1 , 2 , , or μ + ν = 1 , 2 , 3 , , 𝖯 ν μ ( x ) and 𝖯 ν μ ( x ) are linearly dependent, and in these cases either may be paired with almost any linearly independent solution to form a numerically satisfactory pair. … Hence they comprise a numerically satisfactory pair of solutions of (14.2.2) in the interval 1 < x < . With the same conditions, P ν μ ( x ) and 𝑸 ν μ ( x ) comprise a numerically satisfactory pair of solutions in the interval < x < 1 . …
    26: 23.22 Methods of Computation
    Then a pair of generators 2 ω 1 and 2 ω 3 can be chosen in an almost canonical way as follows. …This yields a pair of generators that satisfy τ > 0 , | τ | 1 2 , | τ | > 1 . …
  • (a)

    In the general case, given by c d 0 , we compute the roots α , β , γ , say, of the cubic equation 4 t 3 c t d = 0 ; see §1.11(iii). These roots are necessarily distinct and represent e 1 , e 2 , e 3 in some order.

    If c and d are real, and the discriminant is positive, that is c 3 27 d 2 > 0 , then e 1 , e 2 , e 3 can be identified via (23.5.1), and k 2 , k 2 obtained from (23.6.16).

    If c 3 27 d 2 < 0 , or c and d are not both real, then we label α , β , γ so that the triangle with vertices α , β , γ is positively oriented and [ α , γ ] is its longest side (chosen arbitrarily if there is more than one). In particular, if α , β , γ are collinear, then we label them so that β is on the line segment ( α , γ ) . In consequence, k 2 = ( β γ ) / ( α γ ) , k 2 = ( α β ) / ( α γ ) satisfy k 2 0 k 2 (with strict inequality unless α , β , γ are collinear); also | k 2 | , | k 2 | 1 .

    Finally, on taking the principal square roots of k 2 and k 2 we obtain values for k and k that lie in the 1st and 4th quadrants, respectively, and 2 ω 1 , 2 ω 3 are given by

    23.22.1 2 ω 1 M ( 1 , k ) = 2 i ω 3 M ( 1 , k ) = π 3 c ( 2 + k 2 k 2 ) ( k 2 k 2 ) d ( 1 k 2 k 2 ) ,

    where M denotes the arithmetic-geometric mean (see §§19.8(i) and 22.20(ii)). This process yields 2 possible pairs ( 2 ω 1 , 2 ω 3 ), corresponding to the 2 possible choices of the square root.

  • (b)

    If d = 0 , then

    23.22.2 2 ω 1 = 2 i ω 3 = ( Γ ( 1 4 ) ) 2 2 π c 1 / 4 .

    There are 4 possible pairs ( 2 ω 1 , 2 ω 3 ), corresponding to the 4 rotations of a square lattice. The lemniscatic case occurs when c > 0 and ω 1 > 0 .

  • (c)

    If c = 0 , then

    23.22.3 2 ω 1 = 2 e π i / 3 ω 3 = ( Γ ( 1 3 ) ) 3 2 π d 1 / 6 .

    There are 6 possible pairs ( 2 ω 1 , 2 ω 3 ), corresponding to the 6 rotations of a lattice of equilateral triangles. The equianharmonic case occurs when d > 0 and ω 1 > 0 .

  • 27: 10.71 Integrals
    In the following equations f ν , g ν is any one of the four ordered pairs given in (10.63.1), and f ^ ν , g ^ ν is either the same ordered pair or any other ordered pair in (10.63.1). …
    28: 10.24 Functions of Imaginary Order
    In consequence of (10.24.6), when x is large J ~ ν ( x ) and Y ~ ν ( x ) comprise a numerically satisfactory pair of solutions of (10.24.1); compare §2.7(iv). Also, in consequence of (10.24.7)–(10.24.9), when x is small either J ~ ν ( x ) and tanh ( 1 2 π ν ) Y ~ ν ( x ) or J ~ ν ( x ) and Y ~ ν ( x ) comprise a numerically satisfactory pair depending whether ν 0 or ν = 0 . …
    29: 10.45 Functions of Imaginary Order
    In consequence of (10.45.5)–(10.45.7), I ~ ν ( x ) and K ~ ν ( x ) comprise a numerically satisfactory pair of solutions of (10.45.1) when x is large, and either I ~ ν ( x ) and ( 1 / π ) sinh ( π ν ) K ~ ν ( x ) , or I ~ ν ( x ) and K ~ ν ( x ) , comprise a numerically satisfactory pair when x is small, depending whether ν 0 or ν = 0 . …
    30: 16.4 Argument Unity
    Methods of deriving such identities are given by Bailey (1964), Rainville (1960), Raynal (1979), and Wilson (1978). … See Bailey (1964, pp. 19–22). … See Raynal (1979), Wilson (1978), and Bailey (1964). … See Bailey (1964, §4.4(4)). … See Bailey (1964, §§4.3(7) and 7.6(1)) for the transformation formulas and Wilson (1978) for contiguous relations. …