About the Project

Bailey%E2%80%93Daum%20q-Kummer%20sum

AdvancedHelp

(0.004 seconds)

11—20 of 435 matching pages

11: 17.7 Special Cases of Higher ϕ s r Functions
q -Analog of Bailey’s F 1 2 ( 1 ) Sum
Sum Related to (17.6.4)
First q -Analog of Bailey’s F 3 4 ( 1 ) Sum
Second q -Analog of Bailey’s F 3 4 ( 1 ) Sum
Bailey’s Nonterminating Extension of Jackson’s ϕ 7 8 Sum
12: 16.4 Argument Unity
Methods of deriving such identities are given by Bailey (1964), Rainville (1960), Raynal (1979), and Wilson (1978). … See Bailey (1964, pp. 19–22). … See Raynal (1979), Wilson (1978), and Bailey (1964). … See Bailey (1964, §4.4(4)). … See Bailey (1964, §§4.3(7) and 7.6(1)) for the transformation formulas and Wilson (1978) for contiguous relations. …
13: 5.24 Software
  • Bailey (1993). Fortran and C++ wrapper.

  • 14: Bibliography W
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • S. O. Warnaar (1998) A note on the trinomial analogue of Bailey’s lemma. J. Combin. Theory Ser. A 81 (1), pp. 114–118.
  • E. J. Weniger (1996) Computation of the Whittaker function of the second kind by summing its divergent asymptotic series with the help of nonlinear sequence transformations. Computers in Physics 10 (5), pp. 496–503.
  • 15: Bibliography M
  • L. C. Maximon (1955) On the evaluation of indefinite integrals involving the special functions: Application of method. Quart. Appl. Math. 13, pp. 84–93.
  • S. C. Milne and G. M. Lilly (1992) The A l and C l Bailey transform and lemma. Bull. Amer. Math. Soc. (N.S.) 26 (2), pp. 258–263.
  • S. C. Milne (1996) New infinite families of exact sums of squares formulas, Jacobi elliptic functions, and Ramanujan’s tau function. Proc. Nat. Acad. Sci. U.S.A. 93 (26), pp. 15004–15008.
  • S. C. Milne (1997) Balanced Θ 2 3 summation theorems for U ( n ) basic hypergeometric series. Adv. Math. 131 (1), pp. 93–187.
  • L. J. Mordell (1917) On the representation of numbers as a sum of 2 r squares. Quarterly Journal of Math. 48, pp. 93–104.
  • 16: 17.9 Further Transformations of ϕ r r + 1 Functions
    Bailey’s Transformation of Very-Well-Poised ϕ 7 8
    §17.9(iv) Bibasic Series
    17.9.19 n = 0 ( a ; q 2 ) n ( b ; q ) n ( q 2 ; q 2 ) n ( c ; q ) n z n = ( b ; q ) ( a z ; q 2 ) ( c ; q ) ( z ; q 2 ) n = 0 ( c / b ; q ) 2 n ( z ; q 2 ) n b 2 n ( q ; q ) 2 n ( a z ; q 2 ) n + ( b ; q ) ( a z q ; q 2 ) ( c ; q ) ( z q ; q 2 ) n = 0 ( c / b ; q ) 2 n + 1 ( z q ; q 2 ) n b 2 n + 1 ( q ; q ) 2 n + 1 ( a z q ; q 2 ) n .
    17.9.20 n = 0 ( a ; q k ) n ( b ; q ) k n z n ( q k ; q k ) n ( c ; q ) k n = ( b ; q ) ( a z ; q k ) ( c ; q ) ( z ; q k ) n = 0 ( c / b ; q ) n ( z ; q k ) n b n ( q ; q ) n ( a z ; q k ) n , k = 1 , 2 , 3 , .
    17: 16.6 Transformations of Variable
    16.6.1 F 2 3 ( a , b , c a b + 1 , a c + 1 ; z ) = ( 1 z ) a F 2 3 ( a b c + 1 , 1 2 a , 1 2 ( a + 1 ) a b + 1 , a c + 1 ; 4 z ( 1 z ) 2 ) .
    16.6.2 F 2 3 ( a , 2 b a 1 , 2 2 b + a b , a b + 3 2 ; z 4 ) = ( 1 z ) a F 2 3 ( 1 3 a , 1 3 a + 1 3 , 1 3 a + 2 3 b , a b + 3 2 ; 27 z 4 ( 1 z ) 3 ) .
    For Kummer-type transformations of F 2 2 functions see Miller (2003) and Paris (2005a), and for further transformations see Erdélyi et al. (1953a, §4.5), Miller and Paris (2011), Choi and Rathie (2013) and Wang and Rathie (2013).
    18: Bibliography S
  • K. L. Sala (1989) Transformations of the Jacobian amplitude function and its calculation via the arithmetic-geometric mean. SIAM J. Math. Anal. 20 (6), pp. 1514–1528.
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • R. Sips (1949) Représentation asymptotique des fonctions de Mathieu et des fonctions d’onde sphéroidales. Trans. Amer. Math. Soc. 66 (1), pp. 93–134 (French).
  • V. P. Spiridonov (2002) An elliptic incarnation of the Bailey chain. Int. Math. Res. Not. 2002 (37), pp. 1945–1977.
  • J. R. Stembridge (1995) A Maple package for symmetric functions. J. Symbolic Comput. 20 (5-6), pp. 755–768.
  • 19: 27.2 Functions
    Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. …It can be expressed as a sum over all primes p x : … the sum of the k th powers of the positive integers m n that are relatively prime to n . … is the sum of the α th powers of the divisors of n , where the exponent α can be real or complex. … Table 27.2.2 tabulates the Euler totient function ϕ ( n ) , the divisor function d ( n ) ( = σ 0 ( n ) ), and the sum of the divisors σ ( n ) ( = σ 1 ( n ) ), for n = 1 ( 1 ) 52 . …
    20: 17.4 Basic Hypergeometric Functions
    It is slightly at variance with the notation in Bailey (1964) and Slater (1966). In these references the factor ( ( 1 ) n q ( n 2 ) ) s r is not included in the sum. …
    17.4.3 ψ s r ( a 1 , a 2 , , a r b 1 , b 2 , , b s ; q , z ) = ψ s r ( a 1 , a 2 , , a r ; b 1 , b 2 , , b s ; q , z ) = n = ( a 1 , a 2 , , a r ; q ) n ( 1 ) ( s r ) n q ( s r ) ( n 2 ) z n ( b 1 , b 2 , , b s ; q ) n = n = 0 ( a 1 , a 2 , , a r ; q ) n ( 1 ) ( s r ) n q ( s r ) ( n 2 ) z n ( b 1 , b 2 , , b s ; q ) n + n = 1 ( q / b 1 , q / b 2 , , q / b s ; q ) n ( q / a 1 , q / a 2 , , q / a r ; q ) n ( b 1 b 2 b s a 1 a 2 a r z ) n .
    17.4.5 Φ ( 1 ) ( a ; b , b ; c ; q ; x , y ) = m , n 0 ( a ; q ) m + n ( b ; q ) m ( b ; q ) n x m y n ( q ; q ) m ( q ; q ) n ( c ; q ) m + n ,
    17.4.7 Φ ( 3 ) ( a , a ; b , b ; c ; q ; x , y ) = m , n 0 ( a , b ; q ) m ( a , b ; q ) n x m y n ( q ; q ) m ( q ; q ) n ( c ; q ) m + n ,