About the Project

BB棋牌游戏【打开网址∶3344yule.com】BB棋牌游戏平台【官网:3344yule.com】BB博彩游戏平台

AdvancedHelp

Did you mean BB棋牌游戏【打开网址∶13443yule.com】BB棋牌游戏平台【官网:13443yule.com】BB博彩游戏平台 ?

(0.003 seconds)

1—10 of 21 matching pages

1: 23.10 Addition Theorems and Other Identities
23.10.17 ( c z | c 𝕃 ) = c 2 ( z | 𝕃 ) ,
23.10.18 ζ ( c z | c 𝕃 ) = c 1 ζ ( z | 𝕃 ) ,
23.10.19 σ ( c z | c 𝕃 ) = c σ ( z | 𝕃 ) .
Also, when 𝕃 is replaced by c 𝕃 the lattice invariants g 2 and g 3 are divided by c 4 and c 6 , respectively. …
2: 23.14 Integrals
23.14.2 2 ( z ) d z = 1 6 ( z ) + 1 12 g 2 z ,
3: 23.2 Definitions and Periodic Properties
The generators of a given lattice 𝕃 are not unique. …where a , b , c , d are integers, then 2 χ 1 , 2 χ 3 are generators of 𝕃 iff … When z 𝕃 the functions are related by … When it is important to display the lattice with the functions they are denoted by ( z | 𝕃 ) , ζ ( z | 𝕃 ) , and σ ( z | 𝕃 ) , respectively. … If 2 ω 1 , 2 ω 3 is any pair of generators of 𝕃 , and ω 2 is defined by (23.2.1), then …
4: 23.9 Laurent and Other Power Series
23.9.1 c n = ( 2 n 1 ) w 𝕃 { 0 } w 2 n , n = 2 , 3 , 4 , .
23.9.2 ( z ) = 1 z 2 + n = 2 c n z 2 n 2 , 0 < | z | < | z 0 | ,
23.9.3 ζ ( z ) = 1 z n = 2 c n 2 n 1 z 2 n 1 , 0 < | z | < | z 0 | .
23.9.6 ( ω j + t ) = e j + ( 3 e j 2 5 c 2 ) t 2 + ( 10 c 2 e j + 21 c 3 ) t 4 + ( 7 c 2 e j 2 + 21 c 3 e j + 5 c 2 2 ) t 6 + O ( t 8 ) ,
23.9.7 σ ( z ) = m , n = 0 a m , n ( 10 c 2 ) m ( 56 c 3 ) n z 4 m + 6 n + 1 ( 4 m + 6 n + 1 ) ! ,
5: 23.7 Quarter Periods
23.7.1 ( 1 2 ω 1 ) = e 1 + ( e 1 e 3 ) ( e 1 e 2 ) = e 1 + ω 1 2 ( K ( k ) ) 2 k ,
23.7.2 ( 1 2 ω 2 ) = e 2 i ( e 1 e 2 ) ( e 2 e 3 ) = e 2 i ω 1 2 ( K ( k ) ) 2 k k ,
23.7.3 ( 1 2 ω 3 ) = e 3 ( e 1 e 3 ) ( e 2 e 3 ) = e 3 ω 1 2 ( K ( k ) ) 2 k ,
6: 23.3 Differential Equations
23.3.1 g 2 = 60 w 𝕃 { 0 } w 4 ,
23.3.2 g 3 = 140 w 𝕃 { 0 } w 6 .
Given g 2 and g 3 there is a unique lattice 𝕃 such that (23.3.1) and (23.3.2) are satisfied. … Conversely, g 2 , g 3 , and the set { e 1 , e 2 , e 3 } are determined uniquely by the lattice 𝕃 independently of the choice of generators. However, given any pair of generators 2 ω 1 , 2 ω 3 of 𝕃 , and with ω 2 defined by (23.2.1), we can identify the e j individually, via …
7: 23.1 Special Notation
𝕃 lattice in .
The main functions treated in this chapter are the Weierstrass -function ( z ) = ( z | 𝕃 ) = ( z ; g 2 , g 3 ) ; the Weierstrass zeta function ζ ( z ) = ζ ( z | 𝕃 ) = ζ ( z ; g 2 , g 3 ) ; the Weierstrass sigma function σ ( z ) = σ ( z | 𝕃 ) = σ ( z ; g 2 , g 3 ) ; the elliptic modular function λ ( τ ) ; Klein’s complete invariant J ( τ ) ; Dedekind’s eta function η ( τ ) . …
8: 23.6 Relations to Other Functions
In this subsection 2 ω 1 , 2 ω 3 are any pair of generators of the lattice 𝕃 , and the lattice roots e 1 , e 2 , e 3 are given by (23.3.9). … Again, in Equations (23.6.16)–(23.6.26), 2 ω 1 , 2 ω 3 are any pair of generators of the lattice 𝕃 and e 1 , e 2 , e 3 are given by (23.3.9). … Also, 𝕃 1 , 𝕃 2 , 𝕃 3 are the lattices with generators ( 4 K , 2 i K ) , ( 2 K 2 i K , 2 K + 2 i K ) , ( 2 K , 4 i K ) , respectively.
23.6.27 ζ ( z | 𝕃 1 ) ζ ( z + 2 K | 𝕃 1 ) + ζ ( 2 K | 𝕃 1 ) = ns ( z , k ) ,
9: 23.11 Integral Representations
23.11.2 ( z ) = 1 z 2 + 8 0 s ( e s sinh 2 ( 1 2 z s ) f 1 ( s , τ ) + e i τ s sin 2 ( 1 2 z s ) f 2 ( s , τ ) ) d s ,
23.11.3 ζ ( z ) = 1 z + 0 ( e s ( z s sinh ( z s ) ) f 1 ( s , τ ) e i τ s ( z s sin ( z s ) ) f 2 ( s , τ ) ) d s ,
10: 23.12 Asymptotic Approximations
23.12.2 ζ ( z ) = π 2 4 ω 1 2 ( z 3 + 2 ω 1 π cot ( π z 2 ω 1 ) 8 ( z ω 1 π sin ( π z ω 1 ) ) q 2 + O ( q 4 ) ) ,
23.12.3 σ ( z ) = 2 ω 1 π exp ( π 2 z 2 24 ω 1 2 ) sin ( π z 2 ω 1 ) ( 1 ( π 2 z 2 ω 1 2 4 sin 2 ( π z 2 ω 1 ) ) q 2 + O ( q 4 ) ) ,
provided that z 𝕃 in the case of (23.12.1) and (23.12.2). …