About the Project

B�cklund transformations

AdvancedHelp

(0.000 seconds)

1—10 of 27 matching pages

1: 21.5 Modular Transformations
§21.5 Modular Transformations
§21.5(i) Riemann Theta Functions
Equation (21.5.4) is the modular transformation property for Riemann theta functions. … ( 𝐁 symmetric with integer elements and even diagonal elements.) …( 𝐁 symmetric with integer elements.) …
2: 24.7 Integral Representations
24.7.11 B n ( x ) = 1 2 π i c i c + i ( x + t ) n ( π sin ( π t ) ) 2 d t , 0 < c < 1 .
3: 37.15 Orthogonal Polynomials on the Ball
In particular, the various explicit bases of orthogonal or biorthogonal polynomials on d are related to similar explicit bases on 𝔹 d by quadratic transformations. … Second, the biorthogonal bases (37.14.9) and (37.14.8) on d are related to the biorthogonal bases (37.15.10) and (37.15.11) on 𝔹 d by the quadratic transformations
4: 1.3 Determinants, Linear Operators, and Spectral Expansions
1.3.7 det ( 𝐀 𝐁 ) = det ( 𝐀 ) det ( 𝐁 ) .
Let the columns of matrix 𝐒 be these eigenvectors 𝐚 1 , , 𝐚 n , then 𝐒 1 = 𝐒 H , and the similarity transformation (1.2.73) is now of the form 𝐒 H 𝐀 𝐒 = λ i δ i , j . For Hermitian matrices 𝐒 is unitary, and for real symmetric matrices 𝐒 is an orthogonal transformation. For self-adjoint 𝐀 and 𝐁 , if [ 𝐀 , 𝐁 ] = 𝟎 , see (1.2.66), simultaneous eigenvectors of 𝐀 and 𝐁 always exist. …
5: null
error generating summary
6: 18.17 Integrals
§18.17(v) Fourier Transforms
Jacobi
Ultraspherical
§18.17(vi) Laplace Transforms
§18.17(vii) Mellin Transforms
7: 31.2 Differential Equations
F -Homotopic Transformations
By composing these three steps, there result 2 3 = 8 possible transformations of the dependent variable (including the identity transformation) that preserve the form of (31.2.1).
Homographic Transformations
Composite Transformations
There are 8 24 = 192 automorphisms of equation (31.2.1) by compositions of F -homotopic and homographic transformations. …
8: 32.7 Bäcklund Transformations
32.7.43 ( A , B , C , D ) = ( 1 2 ( Θ 1 ) 2 , 1 2 Θ 0 2 , 1 2 Θ 1 2 , 1 2 ( 1 Θ 2 2 ) ) ,
9: 24.13 Integrals
24.13.1 B n ( t ) d t = B n + 1 ( t ) n + 1 + const. ,
24.13.6 0 1 B n ( t ) B m ( t ) d t = ( 1 ) n 1 m ! n ! ( m + n ) ! B m + n .
For integrals of the form 0 x B n ( t ) B m ( t ) d t and 0 x B n ( t ) B m ( t ) B k ( t ) d t see Agoh and Dilcher (2011). …
§24.13(iii) Compendia
For Laplace and inverse Laplace transforms see Prudnikov et al. (1992a, §§3.28.1–3.28.2) and Prudnikov et al. (1992b, §§3.26.1–3.26.2). …
10: Bibliography P
  • R. B. Paris (2005a) A Kummer-type transformation for a F 2 2 hypergeometric function. J. Comput. Appl. Math. 173 (2), pp. 379–382.
  • M. Petkovšek, H. S. Wilf, and D. Zeilberger (1996) A = B . A K Peters Ltd., Wellesley, MA.
  • E. Petropoulou (2000) Bounds for ratios of modified Bessel functions. Integral Transform. Spec. Funct. 9 (4), pp. 293–298.
  • A. Pinkus and S. Zafrany (1997) Fourier Series and Integral Transforms. Cambridge University Press, Cambridge.
  • A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev (1992a) Integrals and Series: Direct Laplace Transforms, Vol. 4. Gordon and Breach Science Publishers, New York.