About the Project

Anderson localization

AdvancedHelp

(0.001 seconds)

11—20 of 207 matching pages

11: 31.5 Solutions Analytic at Three Singularities: Heun Polynomials
31.5.2 𝐻𝑝 n , m ( a , q n , m ; n , β , γ , δ ; z ) = H ( a , q n , m ; n , β , γ , δ ; z )
12: 19.9 Inequalities
For a sharper, but more complicated, version of (19.9.5) see Anderson et al. (1990). … Further inequalities for K ( k ) and E ( k ) can be found in Alzer and Qiu (2004), Anderson et al. (1992a, b, 1997), and Qiu and Vamanamurthy (1996). …
13: 31.1 Special Notation
The main functions treated in this chapter are H ( a , q ; α , β , γ , δ ; z ) , ( s 1 , s 2 ) 𝐻𝑓 m ( a , q m ; α , β , γ , δ ; z ) , ( s 1 , s 2 ) 𝐻𝑓 m ν ( a , q m ; α , β , γ , δ ; z ) , and the polynomial 𝐻𝑝 n , m ( a , q n , m ; n , β , γ , δ ; z ) . …
14: 31.9 Orthogonality
31.9.3 θ m = ( 1 e 2 π i γ ) ( 1 e 2 π i δ ) ζ γ ( 1 ζ ) δ ( ζ a ) ϵ f 0 ( q , ζ ) f 1 ( q , ζ ) q 𝒲 { f 0 ( q , ζ ) , f 1 ( q , ζ ) } | q = q m ,
f 0 ( q m , z ) = H ( a , q m ; α , β , γ , δ ; z ) ,
f 1 ( q m , z ) = H ( 1 a , α β q m ; α , β , δ , γ ; 1 z ) ,
31.9.6 ρ ( s , t ) = ( s t ) ( s t ) γ 1 ( ( s 1 ) ( t 1 ) ) δ 1 ( ( s a ) ( t a ) ) ϵ 1 ,
15: 2.6 Distributional Methods
Let f ( t ) be locally integrable on [ 0 , ) . The Stieltjes transform of f ( t ) is defined by …Since f ( t ) is locally integrable on [ 0 , ) , it defines a distribution by … In terms of the convolution product …of two locally integrable functions on [ 0 , ) , (2.6.33) can be written …
16: 28.19 Expansions in Series of me ν + 2 n Functions
28.19.2 f ( z ) = n = f n me ν + 2 n ( z , q ) ,
28.19.3 f n = 1 π 0 π f ( z ) me ν + 2 n ( z , q ) d z .
17: 33.11 Asymptotic Expansions for Large ρ
18: 10.58 Zeros
19: 33.4 Recurrence Relations and Derivatives
20: 2.5 Mellin Transform Methods
§2.5(i) Introduction
Let f ( t ) be a locally integrable function on ( 0 , ) , that is, ρ T f ( t ) d t exists for all ρ and T satisfying 0 < ρ < T < . … Let f ( t ) and h ( t ) be locally integrable on ( 0 , ) and …Also, let …
2.5.24 h 2 ( t ) = h ( t ) h 1 ( t ) .