About the Project

Al-Salam–Chihara polynomials

AdvancedHelp

(0.003 seconds)

4 matching pages

1: 18.28 Askey–Wilson Class
§18.28(iii) Al-SalamChihara Polynomials
18.28.7 Q n ( cos θ ; a , b | q ) = p n ( cos θ ; a , b , 0 , 0 | q ) = a n = 0 n q ( a b q ; q ) n ( q n ; q ) ( q ; q ) j = 0 1 ( 1 2 a q j cos θ + a 2 q 2 j ) = ( a b ; q ) n a n ϕ 2 3 ( q n , a e i θ , a e i θ a b , 0 ; q , q ) = ( b e i θ ; q ) n e i n θ ϕ 1 2 ( q n , a e i θ b 1 q 1 n e i θ ; q , b 1 q e i θ ) .
18.28.8 1 2 π 0 π Q n ( cos θ ; a , b | q ) Q m ( cos θ ; a , b | q ) | ( e 2 i θ ; q ) ( a e i θ , b e i θ ; q ) | 2 d θ = δ n , m ( q n + 1 , a b q n ; q ) , a , b or a = b ¯ ; a b 1 ; | a | , | b | 1 .
§18.28(iv) q 1 -Al-SalamChihara Polynomials
18.28.9 Q n ( 1 2 ( a q y + a 1 q y ) ; a , b | q 1 ) = ( 1 ) n b n q 1 2 n ( n 1 ) ( ( a b ) 1 ; q ) n ϕ 1 3 ( q n , q y , a 2 q y ( a b ) 1 ; q , q n a b 1 ) .
2: 18.1 Notation
  • Al-SalamChihara: Q n ( x ; a , b | q ) .

  • 3: Bibliography M
  • I. G. Macdonald (1998) Symmetric Functions and Orthogonal Polynomials. University Lecture Series, Vol. 12, American Mathematical Society, Providence, RI.
  • F. Marcellán, M. Alfaro, and M. L. Rezola (1993) Orthogonal polynomials on Sobolev spaces: Old and new directions. J. Comput. Appl. Math. 48 (1-2), pp. 113–131.
  • A. Máté, P. Nevai, and W. Van Assche (1991) The supports of measures associated with orthogonal polynomials and the spectra of the related selfadjoint operators. Rocky Mountain J. Math. 21 (1), pp. 501–527.
  • A. M. Mathai (1993) A Handbook of Generalized Special Functions for Statistical and Physical Sciences. Oxford Science Publications, The Clarendon Press Oxford University Press, New York.
  • R. Milson (2017) Exceptional orthogonal polynomials.
  • 4: Bibliography
  • W. A. Al-Salam and L. Carlitz (1959) Some determinants of Bernoulli, Euler and related numbers. Portugal. Math. 18, pp. 91–99.
  • W. A. Al-Salam and L. Carlitz (1965) Some orthogonal q -polynomials. Math. Nachr. 30, pp. 47–61.
  • W. A. Al-Salam (1990) Characterization theorems for orthogonal polynomials. In Orthogonal Polynomials (Columbus, OH, 1989), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 294, pp. 1–24.
  • W. A. Al-Salam and M. E. H. Ismail (1994) A q -beta integral on the unit circle and some biorthogonal rational functions. Proc. Amer. Math. Soc. 121 (2), pp. 553–561.
  • R. Askey and M. E. H. Ismail (1984) Recurrence relations, continued fractions, and orthogonal polynomials. Mem. Amer. Math. Soc. 49 (300), pp. iv+108.