About the Project

AOL%20Password%20Reset%20Phone%20Number%208075003455

AdvancedHelp

(0.002 seconds)

21—30 of 274 matching pages

21: 28.16 Asymptotic Expansions for Large q
28.16.1 λ ν ( h 2 ) 2 h 2 + 2 s h 1 8 ( s 2 + 1 ) 1 2 7 h ( s 3 + 3 s ) 1 2 12 h 2 ( 5 s 4 + 34 s 2 + 9 ) 1 2 17 h 3 ( 33 s 5 + 410 s 3 + 405 s ) 1 2 20 h 4 ( 63 s 6 + 1260 s 4 + 2943 s 2 + 486 ) 1 2 25 h 5 ( 527 s 7 + 15617 s 5 + 69001 s 3 + 41607 s ) + .
22: 7.24 Approximations
  • Cody (1969) provides minimax rational approximations for erf x and erfc x . The maximum relative precision is about 20S.

  • Cody et al. (1970) gives minimax rational approximations to Dawson’s integral F ( x ) (maximum relative precision 20S–22S).

  • 23: 25.3 Graphics
    See accompanying text
    Figure 25.3.1: Riemann zeta function ζ ( x ) and its derivative ζ ( x ) , 20 x 10 . Magnify
    24: 25.12 Polylogarithms
    See accompanying text
    Figure 25.12.1: Dilogarithm function Li 2 ( x ) , 20 x < 1 . Magnify
    See accompanying text
    Figure 25.12.2: Absolute value of the dilogarithm function | Li 2 ( x + i y ) | , 20 x 20 , 20 y 20 . … Magnify 3D Help
    25: Tom M. Apostol
    Apostol was born on August 20, 1923. … He was internationally known for his textbooks on calculus, analysis, and analytic number theory, which have been translated into five languages, and for creating Project MATHEMATICS!, a series of video programs that bring mathematics to life with computer animation, live action, music, and special effects. … In 1998, the Mathematical Association of America (MAA) awarded him the annual Trevor Evans Award, presented to authors of an exceptional article that is accessible to undergraduates, for his piece entitled “What Is the Most Surprising Result in Mathematics?” (Answer: the prime number theorem). …
  • 26: 9.18 Tables
  • Miller (1946) tabulates Ai ( x ) , Ai ( x ) for x = 20 ( .01 ) 2 ; log 10 Ai ( x ) , Ai ( x ) / Ai ( x ) for x = 0 ( .1 ) 25 ( 1 ) 75 ; Bi ( x ) , Bi ( x ) for x = 10 ( .1 ) 2.5 ; log 10 Bi ( x ) , Bi ( x ) / Bi ( x ) for x = 0 ( .1 ) 10 ; M ( x ) , N ( x ) , θ ( x ) , ϕ ( x ) (respectively F ( x ) , G ( x ) , χ ( x ) , ψ ( x ) ) for x = 80 ( 1 ) 30 ( .1 ) 0 . Precision is generally 8D; slightly less for some of the auxiliary functions. Extracts from these tables are included in Abramowitz and Stegun (1964, Chapter 10), together with some auxiliary functions for large arguments.

  • Zhang and Jin (1996, p. 337) tabulates Ai ( x ) , Ai ( x ) , Bi ( x ) , Bi ( x ) for x = 0 ( 1 ) 20 to 8S and for x = 20 ( 1 ) 0 to 9D.

  • Miller (1946) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , k = 1 ( 1 ) 50 ; b k , Bi ( b k ) , b k , Bi ( b k ) , k = 1 ( 1 ) 20 . Precision is 8D. Entries for k = 1 ( 1 ) 20 are reproduced in Abramowitz and Stegun (1964, Chapter 10).

  • Sherry (1959) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , k = 1 ( 1 ) 50 ; 20S.

  • Zhang and Jin (1996, p. 339) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , b k , Bi ( b k ) , b k , Bi ( b k ) , k = 1 ( 1 ) 20 ; 8D.

  • 27: 25.20 Approximations
  • Cody et al. (1971) gives rational approximations for ζ ( s ) in the form of quotients of polynomials or quotients of Chebyshev series. The ranges covered are 0.5 s 5 , 5 s 11 , 11 s 25 , 25 s 55 . Precision is varied, with a maximum of 20S.

  • 28: 28.35 Tables
  • Ince (1932) includes eigenvalues a n , b n , and Fourier coefficients for n = 0 or 1 ( 1 ) 6 , q = 0 ( 1 ) 10 ( 2 ) 20 ( 4 ) 40 ; 7D. Also ce n ( x , q ) , se n ( x , q ) for q = 0 ( 1 ) 10 , x = 1 ( 1 ) 90 , corresponding to the eigenvalues in the tables; 5D. Notation: a n = 𝑏𝑒 n 2 q , b n = 𝑏𝑜 n 2 q .

  • Kirkpatrick (1960) contains tables of the modified functions Ce n ( x , q ) , Se n + 1 ( x , q ) for n = 0 ( 1 ) 5 , q = 1 ( 1 ) 20 , x = 0.1 ( .1 ) 1 ; 4D or 5D.

  • National Bureau of Standards (1967) includes the eigenvalues a n ( q ) , b n ( q ) for n = 0 ( 1 ) 3 with q = 0 ( .2 ) 20 ( .5 ) 37 ( 1 ) 100 , and n = 4 ( 1 ) 15 with q = 0 ( 2 ) 100 ; Fourier coefficients for ce n ( x , q ) and se n ( x , q ) for n = 0 ( 1 ) 15 , n = 1 ( 1 ) 15 , respectively, and various values of q in the interval [ 0 , 100 ] ; joining factors g e , n ( q ) , f e , n ( q ) for n = 0 ( 1 ) 15 with q = 0 ( .5  to  10 ) 100 (but in a different notation). Also, eigenvalues for large values of q . Precision is generally 8D.

  • Zhang and Jin (1996, pp. 521–532) includes the eigenvalues a n ( q ) , b n + 1 ( q ) for n = 0 ( 1 ) 4 , q = 0 ( 1 ) 50 ; n = 0 ( 1 ) 20 ( a ’s) or 19 ( b ’s), q = 1 , 3 , 5 , 10 , 15 , 25 , 50 ( 50 ) 200 . Fourier coefficients for ce n ( x , 10 ) , se n + 1 ( x , 10 ) , n = 0 ( 1 ) 7 . Mathieu functions ce n ( x , 10 ) , se n + 1 ( x , 10 ) , and their first x -derivatives for n = 0 ( 1 ) 4 , x = 0 ( 5 ) 90 . Modified Mathieu functions Mc n ( j ) ( x , 10 ) , Ms n + 1 ( j ) ( x , 10 ) , and their first x -derivatives for n = 0 ( 1 ) 4 , j = 1 , 2 , x = 0 ( .2 ) 4 . Precision is mostly 9S.

  • 29: 26.4 Lattice Paths: Multinomial Coefficients and Set Partitions
    ( n n 1 , n 2 , , n k ) is the number of ways of placing n = n 1 + n 2 + + n k distinct objects into k labeled boxes so that there are n j objects in the j th box. It is also the number of k -dimensional lattice paths from ( 0 , 0 , , 0 ) to ( n 1 , n 2 , , n k ) . … M 2 is the number of permutations of { 1 , 2 , , n } with a 1 cycles of length 1, a 2 cycles of length 2, , and a n cycles of length n :
    26.4.7 M 2 = n ! 1 a 1 ( a 1 ! )  2 a 2 ( a 2 ! ) n a n ( a n ! ) .
    M 3 is the number of set partitions of { 1 , 2 , , n } with a 1 subsets of size 1, a 2 subsets of size 2, , and a n subsets of size n : …
    30: 6.16 Mathematical Applications
    §6.16(ii) Number-Theoretic Significance of li ( x )
    If we assume Riemann’s hypothesis that all nonreal zeros of ζ ( s ) have real part of 1 2 25.10(i)), then
    6.16.5 li ( x ) π ( x ) = O ( x ln x ) , x ,
    where π ( x ) is the number of primes less than or equal to x . …
    See accompanying text
    Figure 6.16.2: The logarithmic integral li ( x ) , together with vertical bars indicating the value of π ( x ) for x = 10 , 20 , , 1000 . Magnify