About the Project

2022%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%welcom%EF%BF%BD%EF%BF%BD%EF%BF%heun

AdvancedHelp

(0.024 seconds)

11—18 of 18 matching pages

11: Bibliography N
  • N. E. Nörlund (1922) Mémoire sur les polynomes de Bernoulli. Acta Math. 43, pp. 121–196 (French).
  • 12: Bibliography D
  • A. Decarreau, M.-Cl. Dumont-Lepage, P. Maroni, A. Robert, and A. Ronveaux (1978a) Formes canoniques des équations confluentes de l’équation de Heun. Ann. Soc. Sci. Bruxelles Sér. I 92 (1-2), pp. 53–78.
  • A. Decarreau, P. Maroni, and A. Robert (1978b) Sur les équations confluentes de l’équation de Heun. Ann. Soc. Sci. Bruxelles Sér. I 92 (3), pp. 151–189.
  • G. Doetsch (1955) Handbuch der Laplace-Transformation. Bd. II. Anwendungen der Laplace-Transformation. 1. Abteilung. Birkhäuser Verlag, Basel und Stuttgart (German).
  • 13: Bibliography H
  • R. L. Hall, N. Saad, and K. D. Sen (2010) Soft-core Coulomb potentials and Heun’s differential equation. J. Math. Phys. 51 (2), pp. Art. ID 022107, 19 pages.
  • M. H. Hull and G. Breit (1959) Coulomb Wave Functions. In Handbuch der Physik, Bd. 41/1, S. Flügge (Ed.), pp. 408–465.
  • 14: Notices
  • Master Software Index

    In association with the DLMF we will provide an index of all software for the computation of special functions covered by the DLMF. It is our intention that this will become an exhaustive list of sources of software for special functions. In each case we will maintain a single link where readers can obtain more information about the listed software. We welcome requests from software authors (or distributors) for new items to list.

    Note that here we will only include software with capabilities that go beyond the computation of elementary functions in standard precisions since such software is nearly universal in scientific computing environments.

  • 15: 31.1 Special Notation
    x , y real variables.
    The main functions treated in this chapter are H ( a , q ; α , β , γ , δ ; z ) , ( s 1 , s 2 ) 𝐻𝑓 m ( a , q m ; α , β , γ , δ ; z ) , ( s 1 , s 2 ) 𝐻𝑓 m ν ( a , q m ; α , β , γ , δ ; z ) , and the polynomial 𝐻𝑝 n , m ( a , q n , m ; n , β , γ , δ ; z ) . …Sometimes the parameters are suppressed.
    16: 31.5 Solutions Analytic at Three Singularities: Heun Polynomials
    §31.5 Solutions Analytic at Three Singularities: Heun Polynomials
    31.5.2 𝐻𝑝 n , m ( a , q n , m ; n , β , γ , δ ; z ) = H ( a , q n , m ; n , β , γ , δ ; z )
    These solutions are the Heun polynomials. …
    17: 31.2 Differential Equations
    §31.2(i) Heun’s Equation
    All other homogeneous linear differential equations of the second order having four regular singularities in the extended complex plane, { } , can be transformed into (31.2.1). …
    §31.2(ii) Normal Form of Heun’s Equation
    §31.2(iii) Trigonometric Form
    Jacobi’s Elliptic Form
    18: 31.13 Asymptotic Approximations
    §31.13 Asymptotic Approximations
    For asymptotic approximations of the solutions of Heun’s equation (31.2.1) when two singularities are close together, see Lay and Slavyanov (1999). For asymptotic approximations of the solutions of confluent forms of Heun’s equation in the neighborhood of irregular singularities, see Komarov et al. (1976), Ronveaux (1995, Parts B,C,D,E), Bogush and Otchik (1997), Slavyanov and Veshev (1997), and Lay et al. (1998).