About the Project

.2022年足球世界杯冠军_『网址:68707.vip』足球比赛赌用什么app_b5p6v3_2022年12月2日6时27分38秒_3xvvl7r9d.cc

AdvancedHelp

(0.003 seconds)

21—30 of 810 matching pages

21: Staff
  • Frank W. J. Olver, University of Maryland and NIST, Chaps. 1, 2, 4, 9, 10

  • Nico M. Temme, Centrum Wiskunde Informatica, Chaps. 3, 6, 7, 12

  • Roderick S. C. Wong, City University of Hong Kong, Chaps. 1, 2, 18

  • Nico M. Temme, Centrum Wiskunde & Informatica (CWI), for Chaps. 3, 6, 7, 12

  • Roderick S. C. Wong, City University of Hong Kong, for Chaps. 2, 18

  • 22: 23.19 Interrelations
    23.19.1 λ ( τ ) = 16 ( η 2 ( 2 τ ) η ( 1 2 τ ) η 3 ( τ ) ) 8 ,
    23.19.2 J ( τ ) = 4 27 ( 1 λ ( τ ) + λ 2 ( τ ) ) 3 ( λ ( τ ) ( 1 λ ( τ ) ) ) 2 ,
    23.19.3 J ( τ ) = g 2 3 g 2 3 27 g 3 2 ,
    where g 2 , g 3 are the invariants of the lattice 𝕃 with generators 1 and τ ; see §23.3(i). …
    23: 16.12 Products
    16.12.3 ( F 1 2 ( a , b c ; z ) ) 2 = k = 0 ( 2 a ) k ( 2 b ) k ( c 1 2 ) k ( c ) k ( 2 c 1 ) k k ! F 3 4 ( 1 2 k , 1 2 ( 1 k ) , a + b c + 1 2 , 1 2 a + 1 2 , b + 1 2 , 3 2 k c ; 1 ) z k , | z | < 1 .
    24: 26.9 Integer Partitions: Restricted Number and Part Size
    Figure 26.9.1: Ferrers graph of the partition 7 + 4 + 3 + 3 + 2 + 1 .
    The conjugate to the example in Figure 26.9.1 is 6 + 5 + 4 + 2 + 1 + 1 + 1 . …
    Figure 26.9.2: The partition 5 + 5 + 3 + 2 represented as a lattice path.
    p 2 ( n ) = 1 + n / 2 ,
    p 3 ( n ) = 1 + n 2 + 6 n 12 .
    25: 13.22 Zeros
    From (13.14.2) and (13.14.3) M κ , μ ( z ) has the same zeros as M ( 1 2 + μ κ , 1 + 2 μ , z ) and W κ , μ ( z ) has the same zeros as U ( 1 2 + μ κ , 1 + 2 μ , z ) , hence the results given in §13.9 can be adopted. …
    13.22.1 ϕ r = j 2 μ , r 2 4 κ + j 2 μ , r O ( κ 3 2 ) ,
    where j 2 μ , r is the r th positive zero of the Bessel function J 2 μ ( x ) 10.21(i)). …
    26: 25.20 Approximations
  • Piessens and Branders (1972) gives the coefficients of the Chebyshev-series expansions of s ζ ( s + 1 ) and ζ ( s + k ) , k = 2 , 3 , 4 , 5 , 8 , for 0 s 1 (23D).

  • Luke (1969b, p. 306) gives coefficients in Chebyshev-series expansions that cover ζ ( s ) for 0 s 1 (15D), ζ ( s + 1 ) for 0 s 1 (20D), and ln ξ ( 1 2 + i x ) 25.4) for 1 x 1 (20D). For errata see Piessens and Branders (1972).

  • Morris (1979) gives rational approximations for Li 2 ( x ) 25.12(i)) for 0.5 x 1 . Precision is varied with a maximum of 24S.

  • Antia (1993) gives minimax rational approximations for Γ ( s + 1 ) F s ( x ) , where F s ( x ) is the Fermi–Dirac integral (25.12.14), for the intervals < x 2 and 2 x < , with s = 1 2 , 1 2 , 3 2 , 5 2 . For each s there are three sets of approximations, with relative maximum errors 10 4 , 10 8 , 10 12 .

  • 27: 25.19 Tables
  • Abramowitz and Stegun (1964) tabulates: ζ ( n ) , n = 2 , 3 , 4 , , 20D (p. 811); Li 2 ( 1 x ) , x = 0 ( .01 ) 0.5 , 9D (p. 1005); f ( θ ) , θ = 15 ( 1 ) 30 ( 2 ) 90 ( 5 ) 180 , f ( θ ) + θ ln θ , θ = 0 ( 1 ) 15 , 6D (p. 1006). Here f ( θ ) denotes Clausen’s integral, given by the right-hand side of (25.12.9).

  • Morris (1979) tabulates Li 2 ( x ) 25.12(i)) for ± x = 0.02 ( .02 ) 1 ( .1 ) 6 to 30D.

  • Cloutman (1989) tabulates Γ ( s + 1 ) F s ( x ) , where F s ( x ) is the Fermi–Dirac integral (25.12.14), for s = 1 2 , 1 2 , 3 2 , 5 2 , x = 5 ( .05 ) 25 , to 12S.

  • 28: 4.10 Integrals
    4.10.5 0 1 ln t 1 t d t = π 2 6 ,
    4.10.6 0 1 ln t 1 + t d t = π 2 12 ,
    4.10.10 e a z 1 e a z + 1 d z = 2 a ln ( e a z / 2 + e a z / 2 ) ,
    Extensive compendia of indefinite and definite integrals of logarithms and exponentials include Apelblat (1983, pp. 16–47), Bierens de Haan (1939), Gröbner and Hofreiter (1949, pp. 107–116), Gröbner and Hofreiter (1950, pp. 52–90), Gradshteyn and Ryzhik (2000, Chapters 2–4), and Prudnikov et al. (1986a, §§1.3, 1.6, 2.3, 2.6).
    29: 5.10 Continued Fractions
    5.10.1 Ln Γ ( z ) + z ( z 1 2 ) ln z 1 2 ln ( 2 π ) = a 0 z + a 1 z + a 2 z + a 3 z + a 4 z + a 5 z + ,
    a 0 = 1 12 ,
    a 2 = 53 210 ,
    30: 1.3 Determinants, Linear Operators, and Spectral Expansions
    For n = 2 : … for every distinct pair of j , k , or when one of the factors k = 1 n a j k 2 vanishes. … where ω 1 , ω 2 , , ω n are the n th roots of unity (1.11.21). … Let a j , k be defined for all integer values of j and k , and 𝐷 n [ a j , k ] denote the ( 2 n + 1 ) × ( 2 n + 1 ) determinant … Taking l 2 norms, …