About the Project

.2022%E5%B9%B4%E8%B6%B3%E7%90%83%E4%B8%96%E7%95%8C%E6%9D%AF%E5%86%A0%E5%86%9B_%E3%80%8E%E7%BD%91%E5%9D%80%3A68707.vip%E3%80%8F%E8%B6%B3%E7%90%83%E6%AF%94%E8%B5%9B%E8%B5%8C%E7%94%A8%E4%BB%80%E4%B9%88app_b5p6v3_2022%E5%B9%B412%E6%9C%882%E6%97%A56%E6%97%B627%E5%88%8638%E7%A7%92_3xvvl7r9d.cc

AdvancedHelp

(0.047 seconds)

11—20 of 743 matching pages

11: Bibliography S
  • C. W. Schelin (1983) Calculator function approximation. Amer. Math. Monthly 90 (5), pp. 317–325.
  • B. I. Schneider, J. Segura, A. Gil, X. Guan, and K. Bartschat (2010) A new Fortran 90 program to compute regular and irregular associated Legendre functions. Comput. Phys. Comm. 181 (12), pp. 2091–2097.
  • L. Shen (1981) The elliptical microstrip antenna with circular polarization. IEEE Trans. Antennas and Propagation 29 (1), pp. 9094.
  • R. Sips (1959) Représentation asymptotique des fonctions de Mathieu et des fonctions sphéroidales. II. Trans. Amer. Math. Soc. 90 (2), pp. 340–368.
  • D. M. Smith (2001) Algorithm 814: Fortran 90 software for floating-point multiple precision arithmetic, gamma and related functions. ACM Trans. Math. Software 27 (4), pp. 377–387.
  • 12: 22.21 Tables
    Spenceley and Spenceley (1947) tabulates sn ( K x , k ) , cn ( K x , k ) , dn ( K x , k ) , am ( K x , k ) , ( K x , k ) for arcsin k = 1 ( 1 ) 89 and x = 0 ( 1 90 ) 1 to 12D, or 12 decimals of a radian in the case of am ( K x , k ) . … Lawden (1989, pp. 280–284 and 293–297) tabulates sn ( x , k ) , cn ( x , k ) , dn ( x , k ) , ( x , k ) , Z ( x | k ) to 5D for k = 0.1 ( .1 ) 0.9 , x = 0 ( .1 ) X , where X ranges from 1. …
    13: 25.19 Tables
  • Abramowitz and Stegun (1964) tabulates: ζ ( n ) , n = 2 , 3 , 4 , , 20D (p. 811); Li 2 ( 1 x ) , x = 0 ( .01 ) 0.5 , 9D (p. 1005); f ( θ ) , θ = 15 ( 1 ) 30 ( 2 ) 90 ( 5 ) 180 , f ( θ ) + θ ln θ , θ = 0 ( 1 ) 15 , 6D (p. 1006). Here f ( θ ) denotes Clausen’s integral, given by the right-hand side of (25.12.9).

  • Cloutman (1989) tabulates Γ ( s + 1 ) F s ( x ) , where F s ( x ) is the Fermi–Dirac integral (25.12.14), for s = 1 2 , 1 2 , 3 2 , 5 2 , x = 5 ( .05 ) 25 , to 12S.

  • 14: Bibliography
  • M. Abramowitz and P. Rabinowitz (1954) Evaluation of Coulomb wave functions along the transition line. Physical Rev. (2) 96, pp. 77–79.
  • H. Alzer (1997a) A harmonic mean inequality for the gamma function. J. Comput. Appl. Math. 87 (2), pp. 195–198.
  • G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen (1990) Functional inequalities for complete elliptic integrals and their ratios. SIAM J. Math. Anal. 21 (2), pp. 536–549.
  • G. E. Andrews and A. Berkovich (1998) A trinomial analogue of Bailey’s lemma and N = 2 superconformal invariance. Comm. Math. Phys. 192 (2), pp. 245–260.
  • T. M. Apostol (2006) Bernoulli’s power-sum formulas revisited. Math. Gaz. 90 (518), pp. 276–279.
  • 15: 3.9 Acceleration of Convergence
    3.9.5 ln 2 = 1 1 2 + 1 3 1 4 + = 1 1 2 1 + 1 2 2 2 + 1 3 2 3 + ,
    3.9.6 π 4 = 1 1 3 + 1 5 1 7 + = 1 2 ( 1 + 1 ! 1 3 + 2 ! 3 5 + 3 ! 3 5 7 + ) .
    For further information on the epsilon algorithm see Brezinski and Redivo Zaglia (1991, pp. 78–95). …
    Table 3.9.1: Shanks’ transformation for s n = j = 1 n ( 1 ) j + 1 j 2 .
    n t n , 2 t n , 4 t n , 6 t n , 8 t n , 10
    3 0.82300 13550 14 0.82247 78118 35 0.82246 72851 83 0.82246 70397 56 0.82246 70335 90
    8 0.82243 73137 33 0.82246 67719 32 0.82246 70301 49 0.82246 70333 73 0.82246 70334 23
    16: Bibliography V
  • G. Valent (1986) An integral transform involving Heun functions and a related eigenvalue problem. SIAM J. Math. Anal. 17 (3), pp. 688–703.
  • A. L. Van Buren and J. E. Boisvert (2002) Accurate calculation of prolate spheroidal radial functions of the first kind and their first derivatives. Quart. Appl. Math. 60 (3), pp. 589–599.
  • J. Van Deun and R. Cools (2008) Integrating products of Bessel functions with an additional exponential or rational factor. Comput. Phys. Comm. 178 (8), pp. 578–590.
  • B. Ph. van Milligen and A. López Fraguas (1994) Expansion of vacuum magnetic fields in toroidal harmonics. Comput. Phys. Comm. 81 (1-2), pp. 74–90.
  • L. Vietoris (1983) Dritter Beweis der die unvollständige Gammafunktion betreffenden Lochsschen Ungleichungen. Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 192 (1-3), pp. 8391 (German).
  • 17: 28.35 Tables
  • Blanch and Clemm (1965) includes values of Mc n ( 2 ) ( x , q ) , Mc n ( 2 ) ( x , q ) for n = 0 ( 1 ) 7 , x = 0 ( .02 ) 1 ; n = 8 ( 1 ) 15 , x = 0 ( .01 ) 1 . Also Ms n ( 2 ) ( x , q ) , Ms n ( 2 ) ( x , q ) for n = 1 ( 1 ) 7 , x = 0 ( .02 ) 1 ; n = 8 ( 1 ) 15 , x = 0 ( .01 ) 1 . In all cases q = 0 ( .05 ) 1 . Precision is generally 7D. Approximate formulas and graphs are also included.

  • Ince (1932) includes eigenvalues a n , b n , and Fourier coefficients for n = 0 or 1 ( 1 ) 6 , q = 0 ( 1 ) 10 ( 2 ) 20 ( 4 ) 40 ; 7D. Also ce n ( x , q ) , se n ( x , q ) for q = 0 ( 1 ) 10 , x = 1 ( 1 ) 90 , corresponding to the eigenvalues in the tables; 5D. Notation: a n = 𝑏𝑒 n 2 q , b n = 𝑏𝑜 n 2 q .

  • Zhang and Jin (1996, pp. 521–532) includes the eigenvalues a n ( q ) , b n + 1 ( q ) for n = 0 ( 1 ) 4 , q = 0 ( 1 ) 50 ; n = 0 ( 1 ) 20 ( a ’s) or 19 ( b ’s), q = 1 , 3 , 5 , 10 , 15 , 25 , 50 ( 50 ) 200 . Fourier coefficients for ce n ( x , 10 ) , se n + 1 ( x , 10 ) , n = 0 ( 1 ) 7 . Mathieu functions ce n ( x , 10 ) , se n + 1 ( x , 10 ) , and their first x -derivatives for n = 0 ( 1 ) 4 , x = 0 ( 5 ) 90 . Modified Mathieu functions Mc n ( j ) ( x , 10 ) , Ms n + 1 ( j ) ( x , 10 ) , and their first x -derivatives for n = 0 ( 1 ) 4 , j = 1 , 2 , x = 0 ( .2 ) 4 . Precision is mostly 9S.

  • Blanch and Clemm (1969) includes eigenvalues a n ( q ) , b n ( q ) for q = ρ e i ϕ , ρ = 0 ( .5 ) 25 , ϕ = 5 ( 5 ) 90 , n = 0 ( 1 ) 15 ; 4D. Also a n ( q ) and b n ( q ) for q = i ρ , ρ = 0 ( .5 ) 100 , n = 0 ( 2 ) 14 and n = 2 ( 2 ) 16 , respectively; 8D. Double points for n = 0 ( 1 ) 15 ; 8D. Graphs are included.

  • Zhang and Jin (1996, pp. 533–535) includes the zeros (in degrees) of ce n ( x , 10 ) , se n ( x , 10 ) for n = 1 ( 1 ) 10 , and the first 5 zeros of Mc n ( j ) ( x , 10 ) , Ms n ( j ) ( x , 10 ) for n = 0 or 1 ( 1 ) 8 , j = 1 , 2 . Precision is mostly 9S.

  • 18: Bibliography B
  • P. Boalch (2005) From Klein to Painlevé via Fourier, Laplace and Jimbo. Proc. London Math. Soc. (3) 90 (1), pp. 167–208.
  • R. Bulirsch (1965b) Numerical calculation of elliptic integrals and elliptic functions. Numer. Math. 7 (1), pp. 78–90.
  • P. L. Butzer, M. Hauss, and M. Leclerc (1992) Bernoulli numbers and polynomials of arbitrary complex indices. Appl. Math. Lett. 5 (6), pp. 8388.
  • P. L. Butzer and M. Hauss (1992) Riemann zeta function: Rapidly converging series and integral representations. Appl. Math. Lett. 5 (2), pp. 8388.
  • J. G. Byatt-Smith (2000) The Borel transform and its use in the summation of asymptotic expansions. Stud. Appl. Math. 105 (2), pp. 83–113.
  • 19: Bibliography K
  • N. D. Kazarinoff (1988) Special functions and the Bieberbach conjecture. Amer. Math. Monthly 95 (8), pp. 689–696.
  • R. B. Kearfott (1996) Algorithm 763: INTERVAL_ARITHMETIC: A Fortran 90 module for an interval data type. ACM Trans. Math. Software 22 (4), pp. 385–392.
  • T. H. Koornwinder and F. Bouzeffour (2011) Nonsymmetric Askey-Wilson polynomials as vector-valued polynomials. Appl. Anal. 90 (3-4), pp. 731–746.
  • E. D. Krupnikov and K. S. Kölbig (1997) Some special cases of the generalized hypergeometric function F q q + 1 . J. Comput. Appl. Math. 78 (1), pp. 79–95.
  • M. D. Kruskal (1974) The Korteweg-de Vries Equation and Related Evolution Equations. In Nonlinear Wave Motion (Proc. AMS-SIAM Summer Sem., Clarkson Coll. Tech., Potsdam, N.Y., 1972), A. C. Newell (Ed.), Lectures in Appl. Math., Vol. 15, pp. 61–83.
  • 20: About Color Map
    The following figure illustrates the piece-wise linear mapping of the height to each of the color components red, green and blue, written as R , G , B . …
    R , G , B = { 0 , h ,  1 if  0 h < 1 0 ,  1 ,  2 h if  1 h < 2 h 2 ,  1 ,  0 if  2 h < 3 1 ,  4 h ,  0 if  3 h 4
    In particular, the colors at 90 and 180 degrees are some vague greenish and purplish hues. We therefore use a piecewise linear mapping as illustrated below, that takes phase 0 to red, π / 2 to yellow, π to cyan and 3 π / 2 to blue.
    Figure 3: Continuous phase mapping